Review the techniques and metrics used to evaluate how well your machine learning model performs. You will also learn methods to select the best machine learning model from a set of models that you've built.
Review the techniques and metrics used to evaluate how well your machine learning model performs. You will also learn methods to select the best machine learning model from a set of models that you've built.
During the machine learning model building process, you will have to make some important decisions on how to evaluate how well your models perform, as well as how to select the best performing model. In this course, Model Evaluation and Selection Using scikit-learn, you will learn foundational knowledge/gain the ability to evaluate and select the best models. First, you will learn about a variety of metrics that you can use to evaluate how well your models are performing. Next, you will discover techniques for selecting the model that will perform the best in the future. Finally, you will explore how to implement this knowledge in Python, using the scikit-learn library. When you're finished with this course, you will have the skills and knowledge of needed to evaluate and select the best machine learning model from a set of models that you've built.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.