This course introduces you to the basics of Power Electronics including switches, Inverters, DC/DC converters and all that supported by LTSpice. We cover here how to calculate the power dissipation and thermal stresses for different groups of waveforms on switches by hand and using LTspice. That includes sizing the heat sink and enabling you to decide whether active cooling is required. We introduce you to Silicon, Silicon Carbide and Gallium Nitrate switches and the main differences to enable you to choose the best for an application. You will be able to analyse the DC/DC Converters: Buck, Boost, Buck-Boost and inverters and understand how the current flows in a circuit and to derive the steady state relations between the input and the output.
This course introduces you to the basics of Power Electronics including switches, Inverters, DC/DC converters and all that supported by LTSpice. We cover here how to calculate the power dissipation and thermal stresses for different groups of waveforms on switches by hand and using LTspice. That includes sizing the heat sink and enabling you to decide whether active cooling is required. We introduce you to Silicon, Silicon Carbide and Gallium Nitrate switches and the main differences to enable you to choose the best for an application. You will be able to analyse the DC/DC Converters: Buck, Boost, Buck-Boost and inverters and understand how the current flows in a circuit and to derive the steady state relations between the input and the output.
LTSpice is used to validate the calculation and help to calculate a converter efficiency. We use LTSpice to design a closed-loop Buck converter. All that is supported by problem sets and labs. Problem sets are a group of problems that we supply for you to practice your understanding and we supply also the solutions. For the labs we introduce you to some tasks that will help you to conquer LTspice.
We are expecting you to engage totally with the course and give enough time to understand each part and practice the problem sets. I am confident that will be an excellent course for you to understand any more advanced topics in power electronics.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.