This course serves as an introduction to the field of thermal-fluids engineering, which primarily revolves around the conversion of energy between different forms. Thermal-fluid engineering applications encompass a wide range of fields, such as computer cooling, energy conversion plants, and transportation. Given that thermal-fluids systems inherently incorporate the principles of thermodynamics, heat transfer, and fluid mechanics, this course aims to provide an integrated understanding of these fundamental scientific disciplines. This synthesized approach enables a comprehensive understanding of the subject matter and enhances the capacity to design thermal-fluid systems more effectively.
This course serves as an introduction to the field of thermal-fluids engineering, which primarily revolves around the conversion of energy between different forms. Thermal-fluid engineering applications encompass a wide range of fields, such as computer cooling, energy conversion plants, and transportation. Given that thermal-fluids systems inherently incorporate the principles of thermodynamics, heat transfer, and fluid mechanics, this course aims to provide an integrated understanding of these fundamental scientific disciplines. This synthesized approach enables a comprehensive understanding of the subject matter and enhances the capacity to design thermal-fluid systems more effectively.
In this initial module, the emphasis will be on the fundamentals of thermodynamics and an introduction to fluid mechanics, specifically focusing on hydrostatics. The course will cover the following topics: the first and second laws of thermodynamics, entropy, the ideal gas model, thermodynamic cycles, hydrostatics, and rigid body motion of a fluid.
This course is based on the first third of MIT’s class 2.005 Thermal-Fluids Engineering 1, a core course for MIT Mechanical and Nuclear Engineering undergraduates. As such, this course is of relevance to undergraduate engineering students (e.g. mechanical, nuclear, aerospace, chemical) around the world and engineering professionals who wish to refresh or update their domain knowledge.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.