このコースには、ML ワークフローに対する実践的なアプローチが含まれています。ML チームが直面しているいくつかの ML ビジネス要件とユースケースに関するケーススタディの方法を紹介します。ML チームは、データの管理とガバナンスに必要なツールを理解し、Dataflow と Dataprep の概要を提供することから前処理タスクに BigQuery を使用することまで、データの前処理に最適なアプローチを検討する必要があります。
このコースには、ML ワークフローに対する実践的なアプローチが含まれています。ML チームが直面しているいくつかの ML ビジネス要件とユースケースに関するケーススタディの方法を紹介します。ML チームは、データの管理とガバナンスに必要なツールを理解し、Dataflow と Dataprep の概要を提供することから前処理タスクに BigQuery を使用することまで、データの前処理に最適なアプローチを検討する必要があります。
チームには、2 つの具体的なユースケースに対して機械学習モデルを構築するための 3 つのオプションが提示されます。このコースでは、チームが目的を達成するために、AutoML、BigQuery ML、またはカスタム トレーニングを使用する理由を説明します。さらに、カスタム トレーニングについても深く掘り下げます。コード構造のトレーニング、ストレージ、大規模なデータセットの読み込みからトレーニング済みモデルのエクスポートまで、カスタム トレーニングの要件について説明します。
Docker の知識がほとんどなくてもコンテナ イメージを構築できる、カスタム トレーニングの機械学習モデルを構築します。
ケーススタディ チームは、Vertex Vizier を使用したハイパーパラメータの調整と、これを使用してモデルのパフォーマンスを改善する方法を検証します。モデル改善についての理解を深めるために、理論についても詳しく考察します。正則化、スパース性の扱いなど、数多くある重要なコンセプトと原則について説明します。最後に、予測とモデル モニタリングの概要と、ML モデルを管理するための Vertex AI の活用方法について説明します。
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.