We may earn an affiliate commission when you visit our partners.
Course image
Nestor Nicolas Campos Rojas

En este proyecto, vas a implementar un modelo de clasificación de imágenes con Amazon Rekognition, a partir de datos almacenados en S3, de forma simple sin requerir conocimientos de programación o Machine Learning avanzado.

Enroll now

What's inside

Syllabus

Project Overview
En este proyectos, vamos a crear un modelo de visión computaciones para clasificar fotografías utilizando Amazon Rekognition.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Designed for individuals with no programming or advanced Machine Learning knowledge, making it accessible to a wider audience
Uses a simplified approach to image classification using Amazon Rekognition
Empowers learners with the ability to build image classification models without prior coding experience
Emphasizes practical application of image classification in the context of computer vision

Save this course

Save Analizando imágenes con Amazon Rekognition to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Analizando imágenes con Amazon Rekognition with these activities:
Refrescar conceptos de visión computacional
Revisa conceptos fundamentales de visión computacional para reforzar tu comprensión previa al curso.
Browse courses on Computer Vision
Show steps
  • Revisa los principios básicos de visión computacional, como segmentación de imágenes, extracción de características y reconocimiento de objetos.
  • Practica la implementación de algoritmos de visión computacional en un lenguaje de programación como Python.
Buscar mentores de la industria
Conecta con profesionales de la industria que puedan proporcionar orientación y apoyo adicionales para tu aprendizaje en el curso.
Show steps
  • Asiste a eventos de la industria y ferias de empleo.
  • Conéctate con profesionales en LinkedIn y otras plataformas de redes sociales.
  • Solicita consejos y orientación sobre tu carrera y objetivos de aprendizaje.
Participar en grupos de estudio
Colabora con compañeros para discutir conceptos, resolver problemas y compartir conocimientos, fortaleciendo tu comprensión del material del curso.
Show steps
  • Forma o únete a un grupo de estudio con otros estudiantes del curso.
  • Revisa los temas del curso, resuelve ejercicios y realiza discusiones.
One other activity
Expand to see all activities and additional details
Show all four activities
Explorar tutoriales de Amazon Rekognition
Familiarízate con las funcionalidades y el uso de Amazon Rekognition para el reconocimiento de imágenes.
Browse courses on Amazon Rekognition
Show steps
  • Sigue el tutorial oficial de Amazon Rekognition para crear un clasificador de imágenes.
  • Investiga y completa otros tutoriales en línea que cubran aspectos específicos de Amazon Rekognition.

Career center

Learners who complete Analizando imágenes con Amazon Rekognition will develop knowledge and skills that may be useful to these careers:
Computer Vision Engineer
Using Amazon Rekognition to classify images is a core skill for a Computer Vision Engineer. You will use this video recognition technology and others to analyze and interpret visual data. This is extremely useful in self-driving vehicles, security systems, and medical imaging.
Data Scientist
As a Data Scientist, you will gain experience using Amazon Rekognition, a cloud platform, and other AWS tools to perform machine learning tasks. In this role, you will analyze data, build models, and deploy predictive analytics.
Machine Learning Engineer
For Machine Learning Engineers, Amazon Rekognition is a tool for developing models, which can be used for tasks such as image classification, object detection, and facial recognition. With it, you can build a foundation for many image-based applications.
Software Engineer
As a Software Engineer, you may use Amazon Rekognition to integrate image analysis capabilities into software applications.
Business Analyst
Business Analysts can utilize Amazon Rekognition to analyze market trends, identify customer needs, and optimize business processes.
UX Designer
UX Designers may incorporate Amazon Rekognition into their work to improve the user experience of digital products.
Product Manager
Product Managers may use Amazon Rekognition to analyze customer data, understand user behavior, and improve product design.
Marketing Manager
For Marketing Managers, Amazon Rekognition can be used to analyze campaign performance, target audiences, and optimize marketing strategies.
Quantitative Analyst
Quantitative Analysts may use Amazon Rekognition to analyze financial data, identify trends, and make predictions.
Operations Research Analyst
Operations Research Analysts may utilize Amazon Rekognition to analyze operational data, optimize processes, and improve efficiency.
Statistician
Statisticians may find Amazon Rekognition useful for analyzing large datasets, identifying patterns, and drawing conclusions.
Data Architect
For Data Architects, Amazon Rekognition can be used to design and implement data architectures that support image analysis applications.
Database Administrator
Database Administrators may utilize Amazon Rekognition to manage and optimize databases that store image data.
Systems Engineer
Systems Engineers may use Amazon Rekognition to design and implement systems that incorporate image analysis capabilities.
Technical Writer
Technical Writers may use Amazon Rekognition to create documentation for image analysis systems and applications.

Reading list

We've selected eight books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Analizando imágenes con Amazon Rekognition.
Este libro de texto integral cubre los fundamentos de la visión artificial, brindando una base teórica sólida para comprender los algoritmos y técnicas utilizados en Amazon Rekognition.
Este libro práctico guía a los lectores a través de la implementación de algoritmos de aprendizaje profundo para tareas de visión artificial, lo que proporciona conocimientos valiosos para aprovechar al máximo Amazon Rekognition.
Este libro proporciona una introducción práctica al aprendizaje profundo con Python, sentando las bases para comprender los algoritmos y técnicas utilizados en Amazon Rekognition.
Este libro de texto clásico ofrece una cobertura integral del reconocimiento de patrones y el aprendizaje automático, proporcionando una base teórica para comprender los métodos de Amazon Rekognition.
Este libro fundamental ofrece una introducción integral a los métodos estadísticos utilizados en el aprendizaje automático, proporcionando una base sólida para comprender los algoritmos de Amazon Rekognition.
Esta obra clásica proporciona una base sólida en los fundamentos de la visión artificial, sentando las bases para comprender los algoritmos de Amazon Rekognition.
Este libro ofrece una introducción teórica al aprendizaje automático desde una perspectiva probabilística, proporcionando una comprensión profunda de los modelos subyacentes a Amazon Rekognition.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Analizando imágenes con Amazon Rekognition.
Economía del comportamiento para una gestión pública...
Google Ads: publicidad efectiva
Fundamentos de la publicidad en redes sociales
Liderazgo de equipos remotos
Mercados laborales incluyentes
Publicidad con Meta
Introducción a la programación en C: Tipos de datos y...
Gestión de operaciones
Evolución tecnológica en la industria de la Construcción,...
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser