Visualizing data patterns often involves re-arrangement and elimination to determine patterns. For example, in a list of data with yearly rainfall amounts, to quickly determine the years with the most rainfall, the data can be sorted according to rainfall in descending order. A filter could be used to limit the amount of data observed, for example, to only show rainfall amounts greater than an inch. A merge can be used to join two datasets together, for example rainfall and temperature data from two different sources. The ability to sort, merge and filter data has always existed using SQL with database data, now it can be done in application memory space using Python.
Visualizing data patterns often involves re-arrangement and elimination to determine patterns. For example, in a list of data with yearly rainfall amounts, to quickly determine the years with the most rainfall, the data can be sorted according to rainfall in descending order. A filter could be used to limit the amount of data observed, for example, to only show rainfall amounts greater than an inch. A merge can be used to join two datasets together, for example rainfall and temperature data from two different sources. The ability to sort, merge and filter data has always existed using SQL with database data, now it can be done in application memory space using Python.
In this course, you will create an application that reads data from two CSV files. You will learn how to merge, sort, and filter the data to ultimately produce a regression plot to determine a possible correlation between two data sets.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.