딥 러닝 전문화의 첫 번째 과정에서는 신경망과 딥 러닝의 기본 개념을 학습합니다.
마지막에는 완전히 연결된 심층 신경망의 구축, 훈련 및 적용, 효율적인(벡터화된) 신경망 구현, 신경망 아키텍처의 주요 파라미터 식별, 딥 러닝을 자체 애플리케이션에 적용 등 딥 러닝의 부상을 주도하는 중요한 기술 동향에 익숙해질 것입니다.
딥 러닝 전문화는 딥 러닝의 기능, 과제 및 결과를 이해하고 첨단 AI 기술 개발에 참여할 수 있도록 준비하는 데 도움이 되는 기본 프로그램입니다. 머신 러닝을 업무에 적용하고, 기술 경력의 수준을 높이고, AI 세계에서 결정적인 단계를 밟을 수 있는 지식과 기술을 얻을 수 있는 경로를 제공합니다.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.