We may earn an affiliate commission when you visit our partners.
Course image
Rafael Irizarry

En este curso, les presentaremos los fundamentos de la programación en R. Creemos que se retiene mejor el conocimiento de R cuando se aplica a problemas específicos y por eso utilizaremos un set de datos del mundo real relacionado al crimen en Estados Unidos. Adquirirán las habilidades necesarias en R para abordar preguntas fundamentales sobre las disparidades en asesinatos entre los diferentes estados.

Read more

En este curso, les presentaremos los fundamentos de la programación en R. Creemos que se retiene mejor el conocimiento de R cuando se aplica a problemas específicos y por eso utilizaremos un set de datos del mundo real relacionado al crimen en Estados Unidos. Adquirirán las habilidades necesarias en R para abordar preguntas fundamentales sobre las disparidades en asesinatos entre los diferentes estados.

Primero, estudiaremos las funciones y los tipos de datos en R. Luego, explicaremos cómo trabajar con vectores y cuándo utilizar funciones avanzadas.. Además, aprenderemos a aplicar conceptos generales de programación, como los comandos condicionales "if-else" y los bucles-for. Terminaremos estudiando el wrangling, análisis y visualización de datos.

En este curso, nos enfocamos en construir una base sólida en vez de abordar todas las técnicas de R. La demanda de profesionales cualificados en ciencia de datos está creciendo rápidamente, y este curso ofrece conceptos que servirán de bases para aprender destrezas que los ayudarán a enfrentar los desafíos del análisis de datos del mundo real.

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Learning objectives

  • La sintaxis esencial para r
  • Los conceptos de programación fundamentales en r como tipos de datos, vectores, aritmética e indexación
  • Cómo realizar operaciones en r incluyendo clasificación, discusión de datos utilizando dplyr y a crear gráficos
  • Usted aprenderá:

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Perfecto para principiantes que buscan una base sólida en los conceptos esenciales de R
Enseña las habilidades básicas para abordar problemas relacionados con las disparidades de asesinatos
Tiene como objetivo desarrollar habilidades para abordar desafíos de análisis de datos del mundo real
El uso de un conjunto de datos del mundo real proporciona relevancia práctica
Se enfoca en construir una base sólida en lugar de cubrir temas exhaustivamente, lo que permite un aprendizaje más profundo

Save this course

Save Ciencia de Datos: Fundamentos de R to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Ciencia de Datos: Fundamentos de R with these activities:
Review the basics of programming
This activity will prepare you for the course by helping you remember the foundational knowledge of R programming, which will increase learning outcomes.
Browse courses on Programming Basics
Show steps
  • Review the R syntax and data types.
  • Practice working with vectors and matrices.
  • Brush up on conditional statements and loops.
Organize a study group with classmates
Regularly meeting with classmates to discuss course material in a group setting will enhance your understanding through collaborative learning.
Browse courses on R Programming
Show steps
  • Find a few classmates who are interested in forming a study group.
  • Decide when and where to meet.
  • Establish a schedule and create a list of topics to cover each session.
Complete the R tutorials on Coursera
These tutorials will provide hands-on practice with R programming, which will reinforce the concepts you learn in the course.
Browse courses on R Programming
Show steps
  • Sign up for the Coursera R tutorials.
  • Complete the introductory module.
  • Practice the exercises in each module.
Seven other activities
Expand to see all activities and additional details
Show all ten activities
Seek guidance from an experienced R programmer
Connecting with a mentor will have a positive impact on your course work and provide valuable insights from someone with experience in the field.
Browse courses on Mentorship
Show steps
  • Identify potential mentors who are experienced R programmers.
  • Reach out to your potential mentors and ask for their guidance.
  • Establish regular communication with your mentor.
Working with Vectors in R
Complete a series of exercises to practice creating, manipulating, and summarizing vectors in R.
Browse courses on Vectors
Show steps
  • Create vectors of different data types (e.g., numeric, character, logical).
  • Perform operations on vectors (e.g., addition, subtraction, multiplication).
  • Extract and subset elements from vectors using indexing.
Data Wrangling with dplyr
Follow a guided tutorial on using the dplyr package to filter, transform, and summarize data in R.
Browse courses on Data Wrangling
Show steps
  • Install and load the dplyr package.
  • Learn the basics of data wrangling with dplyr (e.g., filtering, selecting, grouping).
  • Apply dplyr functions to real-world datasets.
Solve R coding challenges on HackerRank
Solving R coding challenges will strengthen your programming skills and improve your problem-solving abilities.
Browse courses on R Programming
Show steps
  • Create an account on HackerRank.
  • Select the R programming track.
  • Solve the coding challenges in the track.
Data Visualization Project
Create a data visualization project that showcases your understanding of data analysis and visualization techniques in R.
Browse courses on Data Visualization
Show steps
  • Choose a dataset and research a topic of interest.
  • Clean and prepare the data for visualization.
  • Create visualizations using appropriate R packages (e.g., ggplot2).
  • Interpret and communicate the results of the visualization.
Build a data visualization project in R
This project will allow you to apply the R programming skills you learn in the course to a real-world problem, which will deepen your understanding of the material.
Browse courses on Data Visualization
Show steps
  • Choose a dataset to analyze.
  • Clean and prepare the data.
  • Create a data visualization using R.
Participate in an R programming competition
Participating will provide you with a practical and simulated environment to test your knowledge and refine your R programming capabilities.
Browse courses on R Programming
Show steps
  • Register for the competition.
  • Find an R programming competition that aligns with your interests.
  • Develop a strategy for solving the competition's challenges.

Career center

Learners who complete Ciencia de Datos: Fundamentos de R will develop knowledge and skills that may be useful to these careers:
Data Analyst
A Data Analyst is someone who collects, processes, and analyzes data to help businesses make informed decisions. This course is a great introduction to data analysis, and it will teach you the skills you need to succeed in this role. With its focus on real-world data and challenges, you will learn how to apply the concepts taught in this course to solve problems in industry.
Data Scientist
Data Scientists use their knowledge in math, statistics, and computer science to solve business problems. This course will teach you the skills needed to succeed in this field. By providing students with a solid base on which to advance their skillset, this course will serve as a cornerstone of your path toward becoming a well-rounded Data Scientist.
Machine Learning Engineer
Machine Learning Engineers build and deploy machine learning models to solve business problems. This course will provide the necessary building blocks to excel in this role. You will learn the fundamentals of R, which is a popular programming language for machine learning.
Business Analyst
Business Analysts use data and technology to solve business problems. This course will give you foundational skills to help you succeed in this role. With a solid understanding of R and its uses, you will be well-equipped to assist Business Analysts with data analysis.
Statistician
Statisticians use data to solve problems. This course may be useful for those looking to enter this field. By familiarizing yourself with R, you will have an advantage in learning statistical methods and their applications.
Financial Analyst
Financial Analysts use data to make investment decisions. This course may be useful for those looking to enter this field. You will learn how to use R to analyze financial data and build models.
Quantitative Analyst
Quantitative Analysts use data to make investment decisions. This course may be useful for those looking to enter this field. You will learn how to use R to analyze financial data and build models.
Market Researcher
Market Researchers use data to understand consumer behavior. This course may be useful for those looking to enter this field. You will learn how to use R to analyze data and identify trends.
Actuary
Actuaries use data to assess risk. This course may be useful for those looking to enter this field. You will learn how to use R to analyze data and build models.
Data Engineer
Data Engineers build and maintain data pipelines. This course may be useful for those looking to enter this field. You will learn how to use R to work with big data.
Software Engineer
Software Engineers design, develop, and maintain software systems. This course may be useful for those looking to enter this field. You will learn the fundamentals of R, which is a popular programming language for data science.
Computer Scientist
Computer Scientists conduct research in computer science. This course may be useful for those looking to enter this field. You will learn the fundamentals of R, which is a popular programming language for data science.
Data Visualization Specialist
Data Visualization Specialists create visualizations to communicate data insights. This course may be useful for those looking to enter this field. You will learn how to use R to create visualizations.
Database Administrator
Database Administrators manage and maintain databases. This course may be useful for those looking to enter this field. You will learn how to use R to work with data in databases.
Information Security Analyst
Information Security Analysts protect computer systems and networks from attack. This course may be useful for those looking to enter this field. You will learn the fundamentals of R, which is a popular programming language for data science.

Reading list

We've selected 13 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Ciencia de Datos: Fundamentos de R.
Este libro es un recurso integral para aprender R para la ciencia de datos, cubriendo temas como la manipulación y el análisis de datos, la visualización y el modelado estadístico.
Este libro clásico proporciona una base sólida en métodos de aprendizaje automático y es una lectura valiosa para quienes buscan profundizar en los aspectos estadísticos de la ciencia de datos.
Este libro proporciona una cobertura avanzada de R, cubriendo temas como programación funcional y metaprogramación.
Este libro se centra en comprender e interpretar modelos de aprendizaje automático, lo que es crucial para la ciencia de datos.
Este libro aborda las cuestiones éticas relacionadas con la ciencia de datos, lo que es esencial para los profesionales de la ciencia de datos responsables.
Este libro se centra en las aplicaciones prácticas de la ciencia de datos en un contexto empresarial, proporcionando información sobre cómo utilizar los datos para tomar decisiones informadas.
Este libro integral cubre los fundamentos del aprendizaje profundo, proporcionando una base para quienes buscan explorar este campo en desarrollo.
Este libro ofrece una introducción al modelado bayesiano, que es una técnica estadística poderosa utilizada en la ciencia de datos.
Aunque este libro se centra en Python, proporciona información valiosa sobre los conceptos y técnicas de ciencia de datos, lo que lo convierte en una lectura complementaria útil.
Este libro es un recurso práctico para crear visualizaciones de datos efectivas en R.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Ciencia de Datos: Fundamentos de R.
Introducción a R para ciencia de datos
Most relevant
Análisis de datos con programación en R
Most relevant
Introducción a Data Science: Programación Estadística con...
Most relevant
Bases y primeros pasos en R
Most relevant
Herramientas para el Análisis de Big Data
Most relevant
Bases de datos y SQL para ciencia de datos
Most relevant
Bases de datos
Most relevant
Fundamentos TIC para profesionales de negocios:...
Most relevant
R súper básico para súper principiantes
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser