This course is an in-depth introduction to SageMaker and the support it offers to train and deploy machine learning models in a distributed environment.
This course is an in-depth introduction to SageMaker and the support it offers to train and deploy machine learning models in a distributed environment.
SageMaker is a fully managed machine learning (ML) platform on AWS which makes prototyping, building, training, and hosting ML models very simple indeed. In this course, Deep Learning Using TensorFlow and Apache MXNet on Amazon SageMaker, you'll be shown how to use the built-in algorithms, such as the linear learner and PCA, hosted on SageMaker containers. The only code you need to write is to prepare your data. You'll then see the 3 different ways in which you build your own custom model on SageMaker. You'll bring your own pre-trained model and host it on SageMaker's first party containers. You'll then work on building your model using Apache MXNet and finally bring a custom container to be trained on SageMaker. When you have finished with this course, you will also know how you can connect to other AWS services such as S3 and Redshift to access your training data, run training in a distributed manner, and autoscale your model variants.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.