We may earn an affiliate commission when you visit our partners.
Course image
Andrew Ng

KI ist nicht nur für Ingenieure. Wenn Sie möchten, dass Ihre Organisation KI besser einsetzt, ist dies der Kurs, an dem alle – insbesondere Ihre nicht technischen Kollegen – teilnehmen müssen.

In diesem Kurs lernen Sie:

- Die Bedeutung der gängigen KI-Terminologie, dazu gehören neuronale Netze, maschinelles Lernen, Deep Learning und Datenwissenschaft

- Was KI realistisch kann und was nicht

- Wie Sie Möglichkeiten erkennen, KI bei Problemen in Ihrer eigenen Organisation anzuwenden

- Wie man Projekte für maschinelles Lernen und Datenwissenschaften aufbaut

Read more

KI ist nicht nur für Ingenieure. Wenn Sie möchten, dass Ihre Organisation KI besser einsetzt, ist dies der Kurs, an dem alle – insbesondere Ihre nicht technischen Kollegen – teilnehmen müssen.

In diesem Kurs lernen Sie:

- Die Bedeutung der gängigen KI-Terminologie, dazu gehören neuronale Netze, maschinelles Lernen, Deep Learning und Datenwissenschaft

- Was KI realistisch kann und was nicht

- Wie Sie Möglichkeiten erkennen, KI bei Problemen in Ihrer eigenen Organisation anzuwenden

- Wie man Projekte für maschinelles Lernen und Datenwissenschaften aufbaut

- Wie Sie mit einem KI-Team zusammenarbeiten und eine KI-Strategie in Ihrem Unternehmen entwickeln

- Wie man sich in ethischen und gesellschaftlichen Diskussionen rund um KI zurechtfindet

Obwohl dieser Kurs größtenteils nicht technisch ist, können Ingenieure diesen Kurs auch nutzen, um die geschäftlichen Aspekte der KI kennenzulernen.

Enroll now

What's inside

Syllabus

Was ist KI?
KI-Projekte erstellen
Aufbau von KI in Ihrem Unternehmen
Read more
KI und die Gesellschaft

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Taught by Andrew Ng, who leads Google Brain and has been recognized for their work in AI
Discusses current trends in AI and how they are applied in various sectors
Emphasizes the integration of AI with business and data science
Suitable for non-technical individuals seeking to understand the impact of AI
Addresses ethical and societal considerations around AI
This course is offered in German

Save this course

Save KI für alle to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in KI für alle with these activities:
Practice KI terminology
Solidify your understanding of KI terminology through repetitive practice.
Show steps
  • Create a glossary of KI terms.
  • Take practice quizzes on KI terminology.
  • Participate in online discussions about KI terminology.
Review KI concepts
Review basic concepts in KI to strengthen your foundational understanding and prepare for the course.
Browse courses on Machine Learning
Show steps
  • Read the course syllabus and introduction materials.
  • Review online resources and videos on KI concepts.
  • Attend an introductory workshop or webinar on KI.
Build a simple KI project
Gain practical experience by building a simple KI project, applying the concepts you learn in the course.
Browse courses on Machine Learning Projects
Show steps
  • Identify a problem that can be solved using KI.
  • Research different KI techniques and choose the most suitable one.
  • Implement the KI solution using a programming language.
  • Test and evaluate the performance of your KI project.
One other activity
Expand to see all activities and additional details
Show all four activities
Develop a KI strategy for your organization
Apply your learnings to your professional context by developing a KI strategy for your organization.
Show steps
  • Conduct a KI assessment within your organization.
  • Identify opportunities where KI can add value.
  • Develop a roadmap for implementing KI solutions.
  • Create a plan for monitoring and evaluating the impact of KI.

Career center

Learners who complete KI für alle will develop knowledge and skills that may be useful to these careers:
Data Scientist
A Data Scientist uses data to solve business problems and make predictions. This course provides a foundation in the key concepts and techniques of data science, including machine learning, deep learning, and data visualization. This knowledge can help Data Scientists develop and implement AI solutions that can improve business outcomes.
Machine Learning Engineer
A Machine Learning Engineer builds and deploys machine learning models. This course provides a foundation in the key concepts and techniques of machine learning, including data preprocessing, model training, and evaluation. This knowledge can help Machine Learning Engineers develop and implement AI solutions that can solve business problems and improve outcomes.
Business Analyst
A Business Analyst helps companies understand how to use technology to improve business processes. This course introduces key AI terminology and concepts, including machine learning, deep learning, and data science. This knowledge can help Business Analysts identify opportunities to use AI to solve business problems and make better decisions.
Product Manager
A Product Manager is responsible for the development and launch of new products. This course introduces key AI concepts and their potential applications in different industries. This knowledge can help Product Managers identify opportunities to use AI to create new products and services that meet customer needs.
Project Manager
A Project Manager plans and executes projects. This course provides an overview of the key concepts and techniques of project management, including scope definition, project planning, and risk management. This knowledge can help Project Managers successfully manage AI projects and ensure that they are delivered on time and within budget.
Data Analyst
This course provides a foundation in the key concepts and techniques of data analysis, including data collection, data cleaning, and data visualization. This knowledge can help Data Analysts identify trends and patterns in data and communicate insights to stakeholders.
Software Engineer
This course provides a foundation in the key concepts and techniques of software engineering, including software design, development, and testing. This knowledge can help Software Engineers develop and implement AI solutions that are scalable, reliable, and efficient.
Quality Assurance Analyst
This course provides an overview of the key concepts and techniques of quality assurance, including testing, defect tracking, and risk management. This knowledge can help Quality Assurance Analysts ensure that AI solutions are of high quality and meet customer requirements.
Technical Writer
This course provides an overview of the key concepts and techniques of technical writing, including documentation, communication, and collaboration. This knowledge can help Technical Writers create clear and concise documentation for AI solutions that can be easily understood by users.
Sales Engineer
This course introduces key AI concepts and their potential applications in different industries. This knowledge can help Sales Engineers identify opportunities to use AI to solve customer problems and close deals.
Marketing Manager
This course introduces key AI concepts and their potential applications in different industries. This knowledge can help Marketing Managers identify opportunities to use AI to create and execute marketing campaigns that are more effective and engaging.
Operations Manager
This course provides an overview of the key concepts and techniques of operations management, including process improvement, quality control, and supply chain management. This knowledge can help Operations Managers identify opportunities to use AI to improve operational efficiency and reduce costs.
Customer Success Manager
This course introduces key AI concepts and their potential applications in different industries. This knowledge can help Customer Success Managers identify opportunities to use AI to improve customer satisfaction and retention.
Human Resources Manager
This course introduces key AI concepts and their potential applications in different industries. This knowledge can help Human Resources Managers identify opportunities to use AI to improve recruiting, hiring, and employee development.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in KI für alle.
Dieses Buch ist ein umfassender Leitfaden zu Deep Learning, einer Teilmenge der KI, die in den letzten Jahren an Bedeutung gewonnen hat. Es bietet eine gründliche Erläuterung der Theorie und Praxis des Deep Learning.
Dieses Buch bietet eine Einführung in Machine Learning aus einer probabilistischen Perspektive. Es ist eine gute Wahl für diejenigen, die ein tieferes Verständnis der theoretischen Grundlagen des Machine Learning erlangen möchten.
Dieses Buch bietet eine praktische Einführung in Machine Learning mit Python-Bibliotheken. Es ist eine wertvolle Ressource für diejenigen, die praktische Erfahrungen mit der Implementierung von Machine-Learning-Modellen sammeln möchten.
Dieses Buch bietet einen Überblick über Data Science, einschließlich der Techniken und Methoden zur Gewinnung von Erkenntnissen aus Daten. Es ist eine gute Wahl für diejenigen, die verstehen möchten, wie KI und Data Science in Unternehmen eingesetzt werden können.
Dieses Buch bietet eine umfassende Einführung in die KI, einschließlich ihrer Grundlagen, Anwendungen und ethischen Implikationen. Es ist eine gute Wahl für diejenigen, die ein umfassendes Verständnis der KI erlangen möchten.
Dieses Buch bietet einen Überblick über die Geschichte, den aktuellen Stand und die Zukunft der KI. Es ist eine gute Wahl für diejenigen, die sich für die breiteren Implikationen der KI für Gesellschaft und Wirtschaft interessieren.
Dieses Buch untersucht die Herausforderungen bei der Entwicklung KI-Systeme, die mit menschlichen Werten vereinbar sind. Es ist eine gute Wahl für diejenigen, die sich für die langfristige Zukunft der KI interessieren.
Dieses Buch untersucht die potenziellen Risiken und Vorteile einer hochentwickelten KI. Es ist eine gute Wahl für diejenigen, die sich für die langfristigen Auswirkungen der KI auf die Menschheit interessieren.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to KI für alle.
Neuronale Netze und Deep Learning
Most relevant
Nützliches Feedback geben (Giving Helpful Feedback)
Most relevant
Linearer & Nichtlineare Finite Elemente Analyse mit...
Most relevant
Nachhaltigkeit lehren lernen
Most relevant
Daten über Visualisierungen teilen
Most relevant
Daten Analysieren, um Fragen zu Beantworten
Most relevant
Open-Source LLMs: Unzensierte & sichere KI lokal auf dem...
Most relevant
High-Fidelity-Designs und Prototypen in Figma Erstellen
Most relevant
Ein Crashkurs in Datenwissenschaft
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser