We may earn an affiliate commission when you visit our partners.
Course image
Andrew Ng, Kian Katanforoosh, and Younes Bensouda Mourri

Wenn auch Sie topaktuelle KI für sich nutzen möchten, sind Sie mit diesem Kurs auf dem richtigen Weg. Deep Learning-Pioniere sind vielgefragt und wenn Sie Deep Learning einmal gemeistert haben, stehen Ihnen zahlreiche Karrieremöglichkeiten offen. Deep Learning ist eine neue „Superkraft“, mit der Sie KI-Systeme entwickeln können, die so vor ein paar Jahren gar nicht möglich gewesen wären.

Mit diesem Kurs eignen Sie sich die grundlegenden Kenntnisse zu Deep Learning an. Am Ende des Kurses werden Sie die folgenden Fähigkeiten erlangt haben:

Read more

Wenn auch Sie topaktuelle KI für sich nutzen möchten, sind Sie mit diesem Kurs auf dem richtigen Weg. Deep Learning-Pioniere sind vielgefragt und wenn Sie Deep Learning einmal gemeistert haben, stehen Ihnen zahlreiche Karrieremöglichkeiten offen. Deep Learning ist eine neue „Superkraft“, mit der Sie KI-Systeme entwickeln können, die so vor ein paar Jahren gar nicht möglich gewesen wären.

Mit diesem Kurs eignen Sie sich die grundlegenden Kenntnisse zu Deep Learning an. Am Ende des Kurses werden Sie die folgenden Fähigkeiten erlangt haben:

– Verständnis der wesentlichen Techniktrends, die Deep Learning vorantreiben

– Erstellen, Trainieren und Anwenden lückenloser, tiefer neuronaler Netze

– Wissen, wie Sie effiziente (vektorisierte) neuronale Netze implementieren

– Verständnis der wichtigsten Parameter in der Architektur eines neuronalen Netzes

In diesem Kurs erfahren Sie zudem, wie Deep Learning eigentlich funktioniert, da das Konzept hier nicht nur flüchtig oder oberflächlich beschrieben wird Nach Abschluss des Kurses werden Sie in der Lage sein, Deep Learning für Ihre eigenen Anwendungen zu nutzen. Wenn Sie eine berufliche Laufbahn im Bereich KI anstreben, werden Sie nach diesem Kurs zudem grundlegende Fragen in einem Bewerbungsgespräch beantworten können.

Dies ist der erste Kurs der Deep Learning-Spezialisierung

Enroll now

What's inside

Syllabus

Neuronale Netze und Deep Learning
Seien Sie in der Lage, die wichtigsten Trends zu erklären, die Deep Learning vorantreiben, und verstehen Sie, wie diese heutzutage angewendet werden.
Read more
Grundlagen zu neuronalen Netzen
Lernen Sie, wie man ein maschinelles Lernproblem mit dem Denkmuster eines neuronalen Netzes erstellt. Erlernen Sie die Verwendung von Vektorisierung, um Ihre Modelle zu beschleunigen.
Flache neuronale Netze
Lernen Sie, wie Sie mithilfe von Forward Propagation und Backpropagation ein neuronales Netz mit einer verborgenen Schicht erstellen.
Tiefe neuronale Netze
Lernen Sie die wesentlichen Berechnungen, die dem Deep Learning zugrunde liegen, verstehen, verwenden Sie sie, um tiefe neuronale Netze zu erstellen, und wenden Sie sie auf die Computervision an.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
- Develops skills that are essential starting points in deep learning
- Offers opportunities to apply deep learning to real-life situations
- Provides a strong foundation in deep learning concepts
- Is ideal for beginners who want to learn the fundamentals of deep learning
- Course content is relevant to real-world applications
- Course is created by a team of experts with extensive experience in deep learning

Save this course

Save Neuronale Netze und Deep Learning to your list so you can find it easily later:
Save

Reviews summary

Expertly clarified deep learning

In this outstanding 5-star rated course, you will obtain a firm grasp of Deep Learning fundamentals. The instructor's exceptional clarity in explaining concepts and providing thorough examples makes this course highly recommended.

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Neuronale Netze und Deep Learning with these activities:
Review relevant research papers
Review key research papers in the field of deep learning to build a strong foundation before starting the course.
Browse courses on Neural Networks
Show steps
  • Identify relevant research papers through reputable sources such as Google Scholar or academic databases.
  • Read and summarize the key findings and methodologies of the selected papers.
Follow online tutorials on neural networks
Reinforce your understanding of neural networks by following guided tutorials provided by experienced practitioners.
Browse courses on Neural Networks
Show steps
  • Search for reputable online tutorials or courses on neural networks.
  • Complete the tutorials, following the instructions and practicing the exercises.
Build a simple neural network using TensorFlow
Apply your knowledge by creating a basic neural network model using TensorFlow to gain hands-on experience.
Browse courses on TensorFlow
Show steps
  • Choose a dataset and define the problem you want to solve.
  • Design and implement the neural network architecture using TensorFlow.
  • Train and evaluate the neural network.
Three other activities
Expand to see all activities and additional details
Show all six activities
Solve coding exercises on LeetCode or similar platforms
Sharpen your coding skills by practicing solving coding exercises related to deep learning concepts.
Browse courses on Coding
Show steps
  • Register on platforms like LeetCode or HackerRank.
  • Solve coding exercises tagged with deep learning or related topics.
Join a study group or online forum
Engage with peers to discuss course concepts, share insights, and learn from others' perspectives.
Browse courses on Deep Learning
Show steps
  • Search for online forums or study groups dedicated to deep learning.
  • Actively participate in discussions, ask questions, and share your knowledge.
Read 'Deep Learning' by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
Gain a comprehensive understanding of deep learning theory and foundations by reading this authoritative book.
Show steps
  • Acquire a copy of 'Deep Learning' by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
  • Read and thoroughly study the book's chapters.

Career center

Learners who complete Neuronale Netze und Deep Learning will develop knowledge and skills that may be useful to these careers:
Computer Vision Engineer
Computer Vision Engineers design and develop computer vision systems that can interpret and understand images and videos. This course can help you gain the skills necessary to build and train deep neural networks, which are essential for developing and deploying AI-powered computer vision solutions. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in computer vision. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Machine Learning Engineer
Machine Learning Engineers design and implement machine learning algorithms to solve real-world problems. This course can help you gain the skills necessary to build and train deep neural networks, which are essential for developing and deploying AI-powered machine learning solutions. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Data Scientist
Data Scientists analyze and interpret large amounts of data using statistical algorithms and machine learning techniques to extract meaningful insights. This course can help you gain the skills necessary to build and train deep neural networks, which are essential for developing and deploying AI-powered data science solutions. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Natural Language Processing Engineer
Natural Language Processing Engineers design and develop natural language processing systems that can understand and generate human language. This course can help you gain the skills necessary to build and train deep neural networks, which are essential for developing and deploying AI-powered natural language processing solutions. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in natural language processing. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Speech Recognition Engineer
Speech Recognition Engineers design and develop speech recognition systems that can recognize and understand human speech. This course can help you gain the skills necessary to build and train deep neural networks, which are essential for developing and deploying AI-powered speech recognition solutions. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in speech recognition. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze financial data and make investment decisions. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in quantitative analysis. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in quantitative analysis. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Operations Research Analyst
Operations Research Analysts use mathematical and statistical techniques to solve complex business problems. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in operations research. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in operations research. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Software Engineer
Software Engineers design, develop, and maintain software systems. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in software development. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Bioinformatician
Bioinformaticians use computational tools to analyze biological data. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in bioinformatics. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in bioinformatics. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Neuroscientist
Neuroscientists study the nervous system and brain. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in neuroscience. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in neuroscience. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Cognitive Scientist
Cognitive Scientists study the mind and cognition. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in cognitive science. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in cognitive science. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Data Analyst
Data Analysts analyze data to extract meaningful insights. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in data analysis. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in data analysis. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Business Intelligence Analyst
Business Intelligence Analysts use data to help businesses make better decisions. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in business intelligence. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in business intelligence. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Robotics Engineer
Robotics Engineers design and develop robots. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in robotics. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in robotics. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.
Financial Analyst
Financial Analysts analyze financial data to make investment recommendations. This course can help you gain the skills necessary to build and train deep neural networks, which are becoming increasingly important in financial analysis. The course covers the fundamentals of deep learning, including the different types of neural networks and their applications in financial analysis. You will also learn about the challenges and best practices of deep learning, as well as the ethical implications of using AI.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Neuronale Netze und Deep Learning.
Dieses Buch bietet eine umfassende Einführung in Deep Learning und behandelt grundlegende Konzepte, Architekturen und Algorithmen. Es ist eine wertvolle Ressource für Anfänger und erfahrene Praktiker gleichermaßen.
Dieses Buch bietet einen praktischen Ansatz für Deep Learning mit Python. Es führt die Leser durch die Implementierung verschiedener Deep-Learning-Modelle und ist besonders nützlich für diejenigen, die praktische Erfahrungen sammeln möchten.
Dieses Buch bietet eine umfassende Einführung in Deep Learning und behandelt grundlegende Konzepte, Architekturen und Algorithmen. Es ist eine wertvolle Ressource für Anfänger und erfahrene Praktiker gleichermaßen.
Dieses Buch bietet einen praktischen Leitfaden für Deep Learning für Computervision. Es führt die Leser durch die Implementierung verschiedener Deep-Learning-Modelle für Bild- und Videoanalyse.
Dieses Buch bietet einen umfassenden Leitfaden für Deep Learning für die Verarbeitung natürlicher Sprache. Es deckt die Grundlagen von Deep Learning ab und bietet detaillierte Anweisungen zur Entwicklung und Implementierung von Deep-Learning-Modellen für NLP-Aufgaben.
Dieses Buch bietet einen umfassenden Leitfaden für Deep Learning für die medizinische Bildanalyse. Es deckt die Grundlagen von Deep Learning ab und bietet detaillierte Anweisungen zur Entwicklung und Implementierung von Deep-Learning-Modellen für medizinische Bildanalyseaufgaben.
Dieses Buch bietet einen umfassenden Leitfaden für Deep Learning für autonome Fahrzeuge. Es deckt die Grundlagen von Deep Learning ab und bietet detaillierte Anweisungen zur Entwicklung und Implementierung von Deep-Learning-Modellen für Aufgaben im Zusammenhang mit autonomen Fahrzeugen.
Dieses Buch bietet einen umfassenden Leitfaden für Deep Learning für Finanzanwendungen. Es deckt die Grundlagen von Deep Learning ab und bietet detaillierte Anweisungen zur Entwicklung und Implementierung von Deep-Learning-Modellen für Finanzanwendungsaufgaben.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Neuronale Netze und Deep Learning.
KI für alle
Most relevant
Einführung in MATLAB
Most relevant
Stable Diffusion ComfyUI: Vom Anfänger zum Profi
Most relevant
LLM Profi: OpenAI, Gemini, Claude, Llama3, ChatGPT & APIs
Most relevant
Deep Learning, Neuronale Netze & AI: Der Komplettkurs
Most relevant
Open-Source LLMs: Unzensierte & sichere KI lokal auf dem...
Most relevant
Microsoft Copilot: KI in Excel, Word, PowerPoint & mehr
Most relevant
Finanzen für Nicht-Finanzfachleute
Most relevant
Angewandte numerische Fluiddynamik
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser