This course can also be taken for academic credit as ECEA 5612, part of CU Boulder’s Master of Science in Electrical Engineering degree.
This course can also be taken for academic credit as ECEA 5612, part of CU Boulder’s Master of Science in Electrical Engineering degree.
This course teaches commonly used approximation methods in quantum mechanics. They include time-independent perturbation theory, time-dependent perturbation theory, tight binding method, variational method and the use of finite basis set. In each case, a specific example is given to clearly show how the method works.
At the end of this course learners will be able to:
1. use time-dependent perturbation theory to obtain first- and second -order corrections to energies and wavefunctions,
2. use time-dependent perturbation theory and obtain transition rates, and
3. use tight binding method, variational method and finite basis set to obtain approximate solutions of various quantum mechanics problems.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.