Learn about the most essential steps of data preparation: Missing value imputation, outlier detection, and duplicate removal.
Learn about the most essential steps of data preparation: Missing value imputation, outlier detection, and duplicate removal.
Data preparation is part of nearly any data analytics project, therefore the skills are highly valuable. In this course, Coping with Missing, Invalid, and Duplicate Data in R, you will learn the main steps of data preparation. First, you will learn how to handle duplicate data. Next, you will discover that missing values prevent a lot of R functions from working properly, therefore you are limited in your R toolset as long as you do not take care of all these NA's. Finally, you will explore outlier and invalid data detection and how they can introduce bias into your analysis. When you’re finished with this course, you will understand why missing values, outliers, and duplicates are problematic, how to detect them, and how to remove them from the dataset.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.