2A-L4 Filters as templates
2A-L5 Edge detection: Gradients
2A-L6 Edge detection: 2D operators
2B-L1 Hough transform: Lines
2B-L2 Hough transform: Circles
2B-L3 Generalized Hough transform
2C-L1 Fourier transform
2C-L2 Convolution in frequency domain
2C-L3 Aliasing
3A-L1 Cameras and images
3A-L2 Perspective imaging
3B-L1 Stereo geometry
3B-L2 Epipolar geometry
3B-L3 Stereo correspondence
3C-L1 Extrinsic camera parameters
3C-L2 Instrinsic camera parameters
3C-L3 Calibrating cameras
3D-L1 Image to image projections
3D-L2 Homographies and mosaics
3D-L3 Projective geometry
3D-L4 Essential matrix
3D-L5 Fundamental matrix
4A-L1 Introduction to "features"
4A-L2 Finding corners
4A-L3 Scale invariance
4B-L1 SIFT descriptor
4B-L2 Matching feature points (a little)
4C-L1 Robust error functions
4C-L2 RANSAC
5A-L1 Photometry
5B-L1 Lightness
5C-L1 Shape from shading
6A-L1 Introduction to motion
6B-L1 Dense flow: Brightness constraint
6B-L2 Dense flow: Lucas and Kanade
6B-L3 Hierarchical LK
6B-L4 Motion models
7A-L1 Introduction to tracking
7B-L1 Tracking as inference
7B-L2 The Kalman filter
7C-L1 Bayes filters
7C-L2 Particle filters
7C-L3 Particle filters for localization
7C-L4 Particle filters for real
7D-L1 Tracking considerations
8A-L1 Introduction to recognition
8B-L1 Classification: Generative models
8B-L2 Principle Component Analysis
8B-L3 Appearance-based tracking
8C-L1 Discriminative classifiers
8C-L2 Boosting and face detection
8C-L3 Support Vector Machines
8C-L4 Bag of visual words
8D-L1 Introduction to video analysis
8D-L2 Activity recognition
8D-L3 Hidden Markov Models
9A-L1 Color spaces
9A-L2 Segmentation
9A-L3 Mean shift segmentation
9A-L4 Segmentation by graph partitioning
9B-L1 Binary morphology
9C-L1 3D perception
10A-L1 The retina
10B-L1 Vision in the brain
We're Done!
Sandbox