Ce MOOC sur le traitement d'images est à l’intersection de plusieurs domaines scientifiques et techniques : les mathématiques, la physique, l’informatique.
De la ligne de fabrication jusqu’au scanner médical en passant par les satellites. Les images nous servent à extraire des informations omniprésentes aujourd’hui. Elles doivent être systématiquement traitées pour s’affranchir des mauvaises conditions d’acquisition, afin d’isoler les objets pertinents et de les analyser.
Ce MOOC sur le traitement d'images est à l’intersection de plusieurs domaines scientifiques et techniques : les mathématiques, la physique, l’informatique.
De la ligne de fabrication jusqu’au scanner médical en passant par les satellites. Les images nous servent à extraire des informations omniprésentes aujourd’hui. Elles doivent être systématiquement traitées pour s’affranchir des mauvaises conditions d’acquisition, afin d’isoler les objets pertinents et de les analyser.
Les traitements présentés (filtrage , rehaussement, suppression du bruit) sont le point de départ de la chaîne d’analyse. Ils permettent par exemple le relevé des diagnostics en imagerie médicale, la détection de pièce défectueuse sur une ligne de production ou encore la reconnaissance des plaques d’immatriculation sur les radars.
Dans ce MOOC, vous allez poursuivre votre progression dans le domaine du traitement des images avec la découverte des méthodes de segmentation et détection d'objets. Vous apprendrez à manipuler les algorithmes de seuillage automatique des images en noir et blanc, de segmentation des images en couleur avec des méthodes simples de classification, l'utilisation et les limites de la ligne de partage des eaux. Les notions de morphologie mathématique seront abordées, ainsi que l'analyse et les mesures des objets après segmentation.
Pour suivre ce cours, des bases du langage de programmation Python sont nécessaires : boucles, opérateur logique, vectorisation des opérations , définition de fonction, tableaux et numpy. Vous devez également maitriser les bases du traitement des images (filtrages linéaires par convolution, notion d'histogramme) ainsi que leur manipulation grâce au langage Python (chargement, affichage).
Une attestation de suivi avec succès est attribuée par Coursera aux apprenants réussissant à obtenir une note supérieure à 50 %.
Ce cours a été créé avec le soutien de la Fondation Patrick & Lina Drahi.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.