We may earn an affiliate commission when you visit our partners.
Course image
Donna Testerman, Claude Marion, and Mikaël Cavallin

Vous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.

Read more

Vous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.

Proposé comme complément de cours aux ingénieurs de première année à l'Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n'en est pas moins un cours à part entière et peut être considéré comme une base solide d'algèbre linéaire pour tout étudiant intéressé par l'apprentissage de cette matière.

Bien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d'exercices seront accompagnées d'un corrigé au format PDF et certains problèmes bénéficieront d'une correction détaillée en vidéo, dans laquelle l'un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d'un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.

Le cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :

  1. Systèmes d'équations linéaires.
  2. Algèbre matricielle.
  3. Espaces vectoriels.
  4. Bases et dimensions.
  5. Applications linéaires.
  6. Matrices et applications linéaires.
  7. Déterminants.
  8. Vecteurs propres, valeurs propres, diagonalisation.
  9. Produits scalaires et espaces euclidiens.
  10. Matrices orthogonales et matrices symétriques.

Cette deuxième partie du cours sera dévouée à l'étude des chapitres 5 à 8 cités plus haut. Une bonne connaissance de la matière enseignée dans le MOOC Algèbre Linéaire (Partie 1) est requise. Aussi, il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l'apprentissage de la matière.

What's inside

Learning objectives

  • De définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ;
  • De reconnaître une application linéaire et de définir les notions de base associées à un tel objet (e.g. noyau, image) ;
  • D’étudier les applications linéaires d'espaces vectoriels de dimension finie à l'aide des représentations matricielles ;
  • De calculer le déterminant d'une matrice donnée et d'utiliser les propriétés de cet objet à bon escient ;
  • De maîtriser les notions relatives à la diagonalisation (e.g. valeurs/vecteurs/espaces propres, multiplicité algèbrique/géométrique, polynôme caractéristique) ;
  • De déterminer si un opérateur linéaire donné est diagonalisable ou non ;
  • D’appliquer la méthode de diagonalisation à un opérateur linéaire donné.
  • A la fin du cours, l'étudiant sera capable:

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Approfondit les vecteurs propres, les valeurs propres et la diagonalisation
Explore les applications linéaires et leurs propriétés
Enseigné par des professeurs reconnus dans le domaine de l'algèbre linéaire
Recommandé en tant qu'introduction à l'algèbre linéaire pour les étudiants universitaires
Requiert des connaissances préalables de la partie 1 du cours

Save this course

Save Algèbre Linéaire (Partie 2) to your list so you can find it easily later:
Save

Reviews summary

Cours clair et bien structuré

Ce cours, idéal pour les débutants comme pour les personnes souhaitant rafraîchir leurs connaissances, est très bien structuré et clair.

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Algèbre Linéaire (Partie 2) with these activities:
Organize course materials
Maintain a well-organized collection of notes, assignments, and resources for effective review and retrieval.
Show steps
  • Create a dedicated folder or notebook for course materials.
  • File notes, assignments, and other handouts in a logical and accessible manner.
  • Use color-coding or other methods to categorize materials for easy reference.
Review linear algebra concepts
Fortify foundational knowledge of linear algebra to ease comprehension of advanced concepts in this course.
Show steps
  • Revisit matrix operations and properties.
  • Review vector spaces, subspaces, and linear independence.
  • Go over determinants and their properties.
  • Recall eigenvalues and eigenvectors, and diagonalization of matrices.
  • Practice solving systems of linear equations using various methods.
Review Basic Matrix Operations
Get refreshed on the basics of matrix operations before starting the course to ensure a smooth transition and a better understanding of the more advanced concepts covered.
Browse courses on Matrix Operations
Show steps
  • Recall the definition of a matrix and its dimensions.
  • Review basic matrix operations such as addition, subtraction, multiplication, and scalar multiplication.
  • Practice finding the inverse of a matrix.
  • Solve systems of linear equations using matrices and determinants.
Eight other activities
Expand to see all activities and additional details
Show all 11 activities
Solve Linear Systems Using Row Reduction
Develop proficiency in solving linear systems using row reduction to prepare for the more complex concepts in the course.
Show steps
  • Set up a linear system in matrix form.
  • Apply row operations to transform the matrix into row echelon form.
  • Solve the system of equations represented by the row echelon form.
Participate in study sessions
Connect with peers, discuss concepts, and reinforce learning through collaborative problem-solving.
Show steps
  • Find a study group or connect with classmates for collaborative sessions.
  • Review course material and prepare questions or topics for discussion.
  • Engage in active discussions, explaining concepts and solving problems together.
Solve linear equations practice
Reinforce understanding of solving linear equations and systems by practicing various techniques.
Show steps
  • Solve systems of linear equations using Gaussian elimination.
  • Apply Cramer's rule to find solutions.
  • Use matrix methods to solve linear systems.
Learn about Vector Spaces and Linear Independence
Gain a strong understanding of vector spaces and linear independence, which are fundamental concepts for the remainder of the course.
Browse courses on Vector Spaces
Show steps
  • Define a vector space and its properties.
  • Identify whether a set of vectors forms a vector space or not.
  • Check for linear independence and dependence among vectors.
  • Apply these concepts to solve problems involving vector spaces.
Explore online tutorials on linear transformations
Seek additional resources and explanations to enhance comprehension of linear transformations.
Browse courses on Linear Transformations
Show steps
  • Identify reliable online platforms or tutorials for linear transformations.
  • Watch videos or read articles to gain alternative perspectives.
  • Follow along with examples and practice problems.
Develop concept maps
Visualize and connect key concepts, fostering a deeper understanding of the course material.
Show steps
  • Identify and list down essential concepts and their relationships.
  • Create a visual representation using diagrams or mind maps.
  • Link concepts with arrows or lines, indicating relationships.
  • Review and refine concept maps to strengthen understanding.
Discuss Applications of Linear Algebra in Real-World Scenarios
Connect the theoretical concepts of the course to real-world applications to enhance comprehension and practical relevance.
Show steps
  • Brainstorm real-world examples where linear algebra is used.
  • Discuss how linear algebra is applied in specific fields such as computer graphics, data analysis, or engineering.
  • Share insights and experiences on the practical value of linear algebra.
  • Reflect on how these applications impact the understanding of the course material.
Create a Visual Representation of a Linear Transformation
Deepen understanding of linear transformations by visualizing their geometric effects and matrix representations.
Browse courses on Linear Transformations
Show steps
  • Choose a linear transformation and its matrix representation.
  • Sketch the transformation as a geometric operation.
  • Create a visual representation using software or online tools.
  • Analyze the geometric effects of the transformation and relate them to the matrix representation.
  • Present the visual representation and insights to others.

Career center

Learners who complete Algèbre Linéaire (Partie 2) will develop knowledge and skills that may be useful to these careers:
Mathematician
Algèbre Linéaire (Partie 2) provides a comprehensive foundation in linear algebra, a core branch of mathematics. The course covers advanced topics such as vector spaces, linear transformations, and diagonalization, which are essential for understanding and contributing to the field of mathematics. By mastering these concepts, individuals can develop the mathematical skills necessary to conduct research, solve complex problems, and advance the field of mathematics.
Machine Learning Engineer
Algèbre Linéaire (Partie 2) provides a solid foundation in linear algebra, a branch of mathematics that is widely used in machine learning. The course covers topics such as matrix algebra, determinants, and vector spaces, which are essential for understanding and applying machine learning algorithms, neural networks, and deep learning techniques. By mastering these concepts, individuals can develop the mathematical skills necessary to design and implement machine learning models, analyze data, and make predictions, enhancing their competitiveness in the field of machine learning engineering.
Quantitative Analyst
Algèbre Linéaire (Partie 2) provides a solid foundation in linear algebra, a branch of mathematics widely used in quantitative finance. The course covers topics such as matrix algebra, determinants, and linear transformations, which are essential for understanding and applying statistical models, risk management techniques, and portfolio optimization. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze financial data, build predictive models, and make data-driven investment decisions, enhancing their competitiveness in the quantitative finance industry.
Operations Research Analyst
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that is widely used in operations research. The course covers topics such as systems of linear equations, matrix algebra, and linear programming, which are essential for understanding and applying optimization techniques used in logistics, supply chain management, and resource allocation. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze complex systems, formulate mathematical models, and make data-driven decisions, enhancing their effectiveness in the operations research field.
Statistician
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that is widely used in statistics. The course covers topics such as matrix algebra, determinants, and vector spaces, which are essential for understanding and applying statistical models, data analysis techniques, and hypothesis testing. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze data, build predictive models, and make informed decisions, enhancing their competitiveness in the statistics field.
Data Scientist
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics used extensively in data science. The course covers concepts such as matrices, determinants, vector spaces, and linear transformations, which are essential for understanding and applying machine learning algorithms, statistical modeling, and data analysis. By mastering these concepts, individuals can develop the mathematical skills necessary to extract insights from complex datasets, build predictive models, and make data-driven decisions, enhancing their competitiveness in the data science field.
Data Analyst
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that is widely used in data analytics. The course covers topics such as matrix algebra, determinants, and vector spaces, which are essential for understanding and applying statistical models, machine learning algorithms, and data visualization techniques. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze large datasets, extract meaningful insights, and make data-driven decisions, enhancing their competitiveness in the data analytics field.
Financial Analyst
Algèbre Linéaire (Partie 2) provides a solid foundation in linear algebra, a branch of mathematics that plays a vital role in financial analysis. The course covers concepts such as matrix algebra, determinants, and linear transformations, which are essential for understanding and applying statistical models, financial forecasting techniques, and portfolio optimization. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze financial data, build predictive models, and make informed investment decisions, enhancing their competitiveness in the financial analysis field.
Actuary
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that plays a vital role in actuarial science. The course covers concepts such as systems of linear equations, matrix algebra, and vector spaces, which are essential for understanding and applying statistical models used in risk assessment, insurance pricing, and financial planning. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze data, evaluate risks, and make informed decisions in the actuarial field.
Computer Scientist
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that is widely used in computer science. The course covers topics such as matrix algebra, linear transformations, and vector spaces, which are essential for understanding and applying algorithms, data structures, and computer graphics. By mastering these concepts, individuals can develop the mathematical skills necessary to design and implement efficient algorithms, optimize performance, and create visually appealing applications.
Physicist
Algèbre Linéaire (Partie 2) provides a strong foundation in linear algebra, a branch of mathematics that is widely used in physics. The course covers topics such as matrix algebra, determinants, and vector spaces, which are essential for understanding and applying quantum mechanics, electromagnetism, and classical mechanics. By mastering these concepts, individuals can develop the mathematical skills necessary to analyze physical systems, solve complex problems, and contribute to the advancement of physics.
Engineer
Algèbre Linéaire (Partie 2) provides a solid foundation in linear algebra, a branch of mathematics that is widely used in engineering. The course covers topics such as matrix algebra, linear transformations, and vector spaces, which are essential for understanding and applying concepts in fields such as structural analysis, fluid mechanics, and control systems. By mastering these concepts, engineers can develop the mathematical skills necessary to design and analyze complex systems, solve engineering problems, and advance the field of engineering.
Software Engineer
Algèbre Linéaire (Partie 2) provides a solid foundation in linear algebra, a branch of mathematics used in various aspects of software engineering. The course covers topics such as matrix algebra, linear transformations, and vector spaces, which are fundamental concepts for understanding computer graphics, image processing, and numerical simulations. By gaining expertise in these concepts, software engineers can develop robust and efficient algorithms, optimize performance, and create visually appealing applications.
Math Teacher
The course Algèbre Linéaire (Partie 2) provides a foundational understanding of linear algebra, which is a branch of mathematics that is widely used in various fields, including education. Linear algebra is essential for developing the skills needed to teach mathematics at the secondary level. The course covers topics such as systems of linear equations, matrix algebra, vector spaces, and linear transformations, which are fundamental concepts in linear algebra. By gaining a solid understanding of these concepts, individuals can enhance their knowledge and pedagogical skills in teaching mathematics, particularly in areas such as geometry, algebra, and statistics.
Economist
Algèbre Linéaire (Partie 2) may be useful for economists seeking to advance their understanding of the mathematical foundations of economics. The course covers topics such as matrix algebra, linear transformations, and vector spaces, which are used in economic modeling, econometrics, and optimization. By gaining a solid grasp of these concepts, economists can enhance their ability to analyze economic data, build mathematical models, and make informed economic decisions.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Algèbre Linéaire (Partie 2).
Widely used textbook for undergraduate linear algebra courses. It covers all the topics in the course, and it provides many examples and exercises.
Un manuel d'algèbre linéaire classique, largement utilisé dans les programmes universitaires. Couvre un large éventail de sujets, y compris les applications linéaires, les déterminants et les vecteurs propres. Peut servir de référence complète ou de manuel alternatif pour le cours.
Provides a rigorous foundation in linear algebra for advanced undergraduate and graduate students. It covers more advanced topics than the course, but it would be a valuable reference for students who want to learn more about the subject.
Ce livre est une référence approfondie sur l'analyse matricielle. Il couvre un large éventail de sujets, notamment les valeurs propres, les vecteurs propres et les matrices orthogonales.
Ce livre présente les méthodes numériques pour résoudre les problèmes d'algèbre linéaire. Il est utile pour les étudiants qui souhaitent utiliser l'algèbre linéaire dans des applications pratiques.
Comprehensive treatment of linear algebra. It covers a wide range of topics, including advanced topics such as multilinear algebra and representation theory.
Ce livre présente les liens entre l'algèbre linéaire et la théorie des représentations. Il est utile pour les étudiants qui souhaitent approfondir leurs connaissances en algèbre linéaire.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Algèbre Linéaire (Partie 2).
Algèbre Linéaire (Partie 3)
Most relevant
Algèbre Linéaire (Partie 1)
Most relevant
Stratégie de Gestion de la Dette à Moyen Terme
Most relevant
Introduction à la théorie de Galois
Most relevant
Contaminants émergents : PFAS, algues bleu-vert et métaux
Most relevant
Économie circulaire : une transition incontournable
Most relevant
Le solfège à votre portée 2
Most relevant
Le solfège à votre portée 3
Most relevant
Gestion et Politique de l'eau
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser