Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero.
Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero.
Este curso se ejecuta en la plataforma de proyectos prácticos de Coursera llamada Rhyme. En Rhyme, se realizan proyectos de forma práctica en el navegador. Tendrás acceso instantáneo a escritorios en la nube pre-configurados que contienen todo el software y los datos que necesitas para el proyecto. Todo ya está configurado directamente en tu navegador de Internet para que puedas concentrarte en el aprendizaje. Para este proyecto, obtendrás acceso instantáneo a un escritorio en la nube con Python, Jupyter, Numpy y Seaborn preinstalados.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.