We may earn an affiliate commission when you visit our partners.
Course image
Llorenç Badiella and Isabel Serra
El presente curso tiene como objetivo presentar los métodos y técnicas básicos para el procesamiento y análisis de datos en el contexto de Big Data. No prentende ser un curso exhaustivo sobre Machine Learning ni sobre métodos Estadísticos, simplemente se...
Read more
El presente curso tiene como objetivo presentar los métodos y técnicas básicos para el procesamiento y análisis de datos en el contexto de Big Data. No prentende ser un curso exhaustivo sobre Machine Learning ni sobre métodos Estadísticos, simplemente se pretenden mostrar las características principales de estas técnicas para que el alumno pueda tener una visión general de las opciones que ofrece el análisis de datos para poder explorar, confirmar indicios y en definitiva, extraer conclusiones. El curso está dirigido a estudiantes y profesionales que deseen aproximarse al procesamiento y análisis de datos en Big Data. Aunque no es un requisito indispensable tener experiencia en análisis de datos o en entornos Big Data, el curso puede resultar especialmente interesante a estudiantes con ciertos conocimientos de análisis de datos que deseen introducirse en el entorno Big Data, por otro lado, también resultará interesante a aquellos estudiantes con cierta experiencia en entornos Big Data que deseen adquirir una mayor visión analítica. En este sentido el curso pretende ofrecer recursos realistas en el contexto Big Data y por este motivo se trabajará des de una máquina virtual con la aplicación Jupyter como enlace para desarrollar los modelos y técnicas con PySpark. El curso está dividido en 4 módulos más o menos independientes aunque se recomienda realizarlos de forma secuencial. En el Módulo 1 se presentan los diferentes problemas y técnicas más habitules para analizar datos desde una perspectiva general. También se introduce el caso de estudio y las herramientas de trabajo que se emplearán. El resto de módulo está dedicado a la tarea de Exploración y Pre-Proceso de los datos, incluyendo consultas, tareas de gestión, resúmenes numéricos y gráficos. Los siguientes módulos se focalizan en las técnicas de análisis. El Módulo 2 se centra en técnicas de modelización básicas, en particular regresión y regresión logística. Además de repasar las etapas de calibración del modelo, también se incluyen las etapas de validación y simplificación. El módulo 3 está plenamente dedicado a la técnica de Árboles de Regresión y Clasificación. También se incluyen los bosques aleatorios. El módulo final contiene la técnica de Redes Neuronales para clasificación y también una introducción a las técnicas No Supervisadas, en particular, reducción de dimensión a través del análisis de componentes principales y la clasificación automática a través del análisis de clústers.
Enroll now

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Introduces basic methods and techniques for processing and analyzing data in the context of Big Data
Provides a general overview of the options offered by data analysis for exploring, confirming indications, and extracting conclusions
Taught by instructors Llorenç Badiella and Isabel Serra
Suitable for students and professionals who wish to approach data processing and analysis in Big Data
May be particularly interesting for students with certain knowledge of data analysis who want to enter the Big Data environment
Also useful for students with experience in Big Data environments who want to acquire a greater analytical vision

Save this course

Save Big Data: procesamiento y análisis to your list so you can find it easily later:
Save

Reviews summary

Big data: análisis y procesamiento

Si estás interesado en procesar y analizar Big Data, este curso es una buena opción para ti. Con más de 80 opiniones positivas, los estudiantes valoran especialmente la combinación de teoría y aplicaciones del mundo real. Se recomiendan conocimientos en matemáticas y programación para aprovechar al máximo este curso.
La experiencia de aprendizaje es gratificante.
"Un muy buen enfoque teórico practico."
"Excelentes fundamentos de estadistica y análisis de datos."
"Sumamente instructivo y didáctico para introducirnos al mundo de las técnicas, tanto conceptuales como de las herramientas computacionales, que se utilizan en el procesamiento y análisis de datos dentro del contexto de la Big Data."
El curso incluye prácticas y ejercicios prácticos valiosos.
"Muy buen curso y muy practico"
"Muy práctico, tocando teoría y práctica."
"Bastante bueno y práctico. Enseña como tratar los datos y los principales modelos de Machine Learning."
El curso es desafiante debido a su alto nivel de complejidad.
"El curso más difícil sin ninguna duda, pero cuando lo terminas es el más satisfactorio, muy bueno!"
"Definitivamente el curso más difícil de la especialización hasta ahora."
"Muy difícil ya que a lo largo del curso mientras subía la complejidad de los contenidos me di cuenta que pude haber avanzado más rápido teniendo conocimientos en python ya que tuve que buscar contenido en internet."
Los profesores no brindan suficiente apoyo en los foros.
"Los profesores no contestan las dudas en el foro"
"Muchas preguntas sin resolver en el foro."
"Las veces que consulte en los foros nunca tuve respuesta."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Big Data: procesamiento y análisis with these activities:
Organize Course Notes and Resources
Organize and expand on course notes and resources to enhance understanding and retention.
Browse courses on Data Analysis
Show steps
  • Review and summarize lecture notes after each class.
  • Compile relevant materials from textbooks, articles, and online resources.
  • Create a structured system for organizing notes and resources.
Review Data Mining Practical
Review a practical guide to data mining to solidify the understanding of data analysis and Big Data concepts.
Show steps
  • Read chapters 1-3 to gain an overview of data mining concepts and techniques.
  • Complete the exercises in chapters 4-6 to apply data mining techniques to real-world datasets.
  • Summarize key concepts and techniques in your own words to enhance retention.
Solve Data Analysis Puzzles
Engage in data analysis puzzles to reinforce problem-solving skills and deepen understanding of data analysis techniques.
Browse courses on Data Analysis
Show steps
  • Attempt to solve data analysis puzzles on platforms like Kaggle or HackerRank.
  • Analyze the solutions to identify patterns and improve problem-solving strategies.
  • Collaborate with peers to discuss and learn from different approaches.
Two other activities
Expand to see all activities and additional details
Show all five activities
Participate in Data Analysis Study Group
Engage with peers in a study group to discuss course concepts, share resources, and reinforce understanding.
Browse courses on Data Analysis
Show steps
  • Join or create a study group with fellow students.
  • Regularly meet to discuss course material, work on assignments together, and ask questions.
  • Collaborate on projects or case studies to apply data analysis techniques.
Create a Data Analysis Case Study
Develop a data analysis case study to demonstrate the application of data analysis techniques to a specific problem.
Browse courses on Data Analysis
Show steps
  • Choose a business problem that can be addressed using data analysis.
  • Collect and clean the necessary data.
  • Apply data analysis techniques to explore and analyze the data.
  • Write a report that summarizes the findings and provides recommendations.

Career center

Learners who complete Big Data: procesamiento y análisis will develop knowledge and skills that may be useful to these careers:
Data Analyst
Data Analysts collect, clean, and analyze data to help organizations make informed decisions. This course can help you develop the skills necessary to succeed in this role, including data exploration, pre-processing, modeling, and analysis. You will also learn how to use common tools and techniques in the field, such as Jupyter and PySpark.
Data Scientist
Data Scientists use their knowledge of data analysis and machine learning to solve business problems. This course can help you build a foundation in the skills needed for this role, including data modeling, machine learning algorithms, and data visualization. You will also learn how to use popular tools and techniques in the field, such as Python and R.
Machine Learning Engineer
Machine Learning Engineers design and build machine learning models to solve business problems. This course can help you develop the skills necessary to succeed in this role, including data modeling, machine learning algorithms, and cloud computing. You will also learn how to use common tools and techniques in the field, such as TensorFlow and scikit-learn.
Business Analyst
Business Analysts use data and analysis to help organizations improve their performance. This course can help you develop the skills necessary to succeed in this role, including data collection, data analysis, and data visualization. You will also learn how to use common tools and techniques in the field, such as Microsoft Excel and Power BI.
Data Engineer
Data Engineers design and build data pipelines to support data analysis and machine learning. This course can help you develop the skills necessary to succeed in this role, including data warehousing, data integration, and data quality management. You will also learn how to use common tools and techniques in the field, such as Apache Hadoop and Apache Spark.
Statistician
Statisticians use statistical methods to analyze data and draw conclusions. This course can help you develop the skills necessary to succeed in this role, including data analysis, statistical modeling, and data visualization. You will also learn how to use common tools and techniques in the field, such as SAS and R.
Operations Research Analyst
Operations Research Analysts use mathematical and statistical methods to solve business problems. This course can help you develop the skills necessary to succeed in this role, including data analysis, optimization, and simulation. You will also learn how to use common tools and techniques in the field, such as linear programming and queuing theory.
Financial Analyst
Financial Analysts use data and analysis to help organizations make investment decisions. This course can help you develop the skills necessary to succeed in this role, including data analysis, financial modeling, and valuation. You will also learn how to use common tools and techniques in the field, such as Bloomberg and Capital IQ.
Marketing Analyst
Marketing Analysts use data and analysis to help organizations improve their marketing campaigns. This course can help you develop the skills necessary to succeed in this role, including data analysis, market research, and campaign optimization. You will also learn how to use common tools and techniques in the field, such as Google Analytics and Adobe Analytics.
Sales Analyst
Sales Analysts use data and analysis to help organizations improve their sales performance. This course can help you develop the skills necessary to succeed in this role, including data analysis, sales forecasting, and customer relationship management. You will also learn how to use common tools and techniques in the field, such as Salesforce and SAP.
Customer Success Manager
Customer Success Managers use data and analysis to help organizations improve customer satisfaction. This course can help you develop the skills necessary to succeed in this role, including data analysis, customer segmentation, and churn prediction. You will also learn how to use common tools and techniques in the field, such as Salesforce and Zendesk.
Product Manager
Product Managers use data and analysis to help organizations develop and improve their products. This course can help you develop the skills necessary to succeed in this role, including data analysis, market research, and product roadmap development. You will also learn how to use common tools and techniques in the field, such as Jira and Asana.
Project Manager
Project Managers use data and analysis to help organizations plan and execute projects. This course can help you develop the skills necessary to succeed in this role, including data analysis, project planning, and risk management. You will also learn how to use common tools and techniques in the field, such as Microsoft Project and Asana.
Business Intelligence Analyst
Business Intelligence Analysts use data and analysis to help organizations make better decisions. This course can help you develop the skills necessary to succeed in this role, including data analysis, data visualization, and dashboard design. You will also learn how to use common tools and techniques in the field, such as Power BI and Tableau.
Data Governance Analyst
Data Governance Analysts use data and analysis to help organizations manage their data. This course can help you develop the skills necessary to succeed in this role, including data analysis, data quality management, and data security. You will also learn how to use common tools and techniques in the field, such as Informatica and Collibra.

Reading list

We've selected 12 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Big Data: procesamiento y análisis.
Provides a comprehensive overview of big data analytics, from strategic planning to enterprise integration. It valuable resource for anyone looking to understand the potential of big data and how to use it to drive business value.
Provides a comprehensive overview of deep learning, covering the basics of neural networks, convolutional neural networks, and recurrent neural networks. It valuable resource for anyone looking to learn how to use deep learning to solve complex problems.
Provides a practical introduction to deep learning with Python and Keras, covering the basics of neural networks, convolutional neural networks, and recurrent neural networks. It valuable resource for anyone looking to learn how to use deep learning to solve complex problems.
Provides a comprehensive overview of reinforcement learning, covering the basics of reinforcement learning, including how to use reinforcement learning to solve real-world problems.
Provides a practical introduction to neural networks with Python, covering the basics of neural networks, including how to use neural networks to solve real-world problems.
Provides a practical introduction to machine learning, covering the basics of supervised and unsupervised learning. It valuable resource for anyone looking to learn how to use machine learning to solve real-world problems.
Provides a practical introduction to natural language processing with Python, covering the basics of natural language processing, including how to use natural language processing to solve real-world problems.
Provides a practical guide to data science for business professionals. It covers the basics of data science, including data collection, cleaning, and analysis, and how to use data to make informed decisions.
Provides a gentle introduction to data analytics, making it accessible to readers with no prior experience. It covers the basics of data collection, cleaning, and analysis, and how to use data to make informed decisions.
Provides a practical introduction to data visualization, covering the basics of data visualization, including how to choose the right charts and graphs for your data, and how to present your data in a clear and concise way.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Big Data: procesamiento y análisis.
Aprendizaje automático (machine learning) y ciencia de...
Most relevant
Excel avanzado: importación y análisis de datos
Most relevant
Introducción a la ciencia de datos aplicada
Most relevant
Análisis de datos: Diseño y Visualización de Tableros
Most relevant
Análisis de datos: Llévalo al MAX()
Most relevant
Pronóstico y Análisis de los Ingresos Públicos (RFAx)
Most relevant
Introducción a Data Science: Programación Estadística con...
Most relevant
Big Data sin misterios
Most relevant
Visualización y manipulación de datos con Tableau
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser