We may earn an affiliate commission when you visit our partners.
Course image
Andrew Ng, Kian Katanforoosh, and Younes Bensouda Mourri

Этот курс научит вас строить сверточные нейронные сети и использовать их для обработки изображений. Благодаря глубокому обучению машинное зрение сегодня работает намного лучше, чем всего лишь два года назад, и это позволяет использовать его в самых разных отраслях, начиная от безопасного автономного вождения и точного распознавания лиц и заканчивая автоматической интерпретацией рентгеновских снимков.

Read more

Этот курс научит вас строить сверточные нейронные сети и использовать их для обработки изображений. Благодаря глубокому обучению машинное зрение сегодня работает намного лучше, чем всего лишь два года назад, и это позволяет использовать его в самых разных отраслях, начиная от безопасного автономного вождения и точного распознавания лиц и заканчивая автоматической интерпретацией рентгеновских снимков.

В рамках курса вы:

— научитесь строить сверточные нейронные сети, включая их самые современные виды, такие как остаточные сети;

— узнаете, как применять сверточные сети в задачах визуального обнаружения объектов и распознавания изображений;

— узнаете, как использовать нейронную передачу стиля для создания изображений;

— научитесь применять алгоритмы к изображениям, видео и другим 2D- и 3D-данным.

Это четвертый курс специализации «Глубокое обучение».

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Основы сверточных нейронных сетей
Вы научитесь использовать базовые слои сверточных нейронных сетей (субдискретизирующие и сверточные) и правильно укладывать их в глубокую сеть для решения задач по многоклассовой классификации изображений.
Read more
Глубокие сверточные модели: практические примеры
Знакомство с практическими приемами и методами, описанными в научных работах по глубоким сверточным нейросетям
Обнаружение объектов
Получение навыков применения знаний о сверточных нейронных сетях к одной из самых сложных, но актуальных областей машинного зрения: обнаружению объектов.
Специальные области применения: распознавание лиц и нейронная передача стиля
Узнайте, как сверточные нейронные сети могут применяться в различных областях, включая построение изображений и распознавание лиц. Реализуйте свой собственный алгоритм для построения изображения и распознавания лиц!

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Taught by Andrew Ng, who is recognized for his work in deep learning
Develops skills, knowledge, and tools that are highly relevant in an academic setting
Taught by Younes Bensouda Mourri, who is recognized for their work in the field
Develops skills, knowledge, and tools that are highly relevant to industry
Taught by Kian Katanforoosh, who is recognized for their work in the industry
Builds a strong foundation for beginners
Covers unique perspectives are ideas that may add color to other topics and subjects

Save this course

Save Сверточные нейронные сети to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Сверточные нейронные сети with these activities:
Решите задачи по сверточным нейронным сетям с использованием TensorFlow
Практика улучшит ваше понимание архитектуры и алгоритмов сверточных нейронных сетей.
Browse courses on TensorFlow
Show steps
  • Найдите набор задач по сверточным нейронным сетям в TensorFlow.
  • Решите как можно больше задач из набора.
Пройдите курс по нейронной передаче стиля с помощью PyTorch
Этот курс познакомит вас с передовыми методами использования сверточных нейронных сетей для создания искусства и визуального контента.
Browse courses on PyTorch
Show steps
  • Найдите курс по нейронной передаче стиля с использованием PyTorch.
  • Пройдите курс и выполните все практические задания.
Show all two activities

Career center

Learners who complete Сверточные нейронные сети will develop knowledge and skills that may be useful to these careers:
Computer Vision Engineer
Computer Vision Engineers design and develop computer vision systems that enable computers to derive meaningful information from digital images, videos, and other visual inputs. Those new to this field should take this course because the specialization on which it is based can help them with this career's steep learning curve. Particularly valuable is the element of this course that teaches how to build advanced CNNs, which are a crucial tool in computer vision.
Artificial Intelligence Engineer
An Artificial Intelligence Engineer understands machine learning, computer vision, natural language processing, and other AI techniques. This course may be useful because it specializes in developing CNNs, a popular choice in the field of AI.
Data Scientist
Data Scientists are responsible for collecting, cleaning, and analyzing data to uncover trends and insights that can be used to make better decisions. Data Scientists often use machine learning and other advanced statistical techniques to analyze data. This course may be useful for this career path because it helps build a foundation in building and using CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Data Analyst
Data Analysts collect, clean, and analyze data to uncover trends and insights that can be used to make better decisions. This course may be useful for this career path because it helps build a foundation in building and using CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Research Scientist
Research Scientists conduct scientific research to deepen our understanding of natural and social phenomena and develop new technologies. This course may be useful for this career path because it provides a foundation for building and using Convolutional Neural Networks (CNNs). CNNs are a widely-used and powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Robotics Engineer
Robotics Engineers design, build, and maintain robots. They may work on a variety of robots, including industrial robots, medical robots, and military robots. This course may be useful for this career path because it provides a foundation for building and using Convolutional Neural Networks (CNNs). CNNs are a widely-used and powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Financial Analyst
Financial Analysts provide financial advice to individuals and businesses. They use a variety of tools and techniques to analyze financial data and make investment recommendations. This course may be useful for this career path because it helps build a foundation in building and using CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze data and make investment decisions. This course may be useful for this career path because it helps build a foundation in building and using CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Machine Learning Engineer
A Machine Learning Engineer is qualified to apply advanced mathematical and statistical models to build Artificial Intelligence (AI) systems. Machine Learning Engineers may specialize in computer vision, natural language processing, or other subfields. This course may be useful for this career path because it provides a foundation for building and using Convolutional Neural Networks (CNNs). CNNs are a widely-used and powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Software Engineer
Software Engineers design, develop, test, and maintain software systems. They may work on a variety of projects, including web applications, mobile apps, and operating systems. This course may be useful for this career path because it provides a foundation for building and using Convolutional Neural Networks (CNNs). CNNs are a widely-used and powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Product Manager
Product Managers are responsible for managing the development and launch of new products. They work with engineers, designers, and marketers to ensure that products meet the needs of customers. This course may be useful for this career path because it helps build a foundation for understanding how to build and use CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Business Analyst
Business Analysts work with businesses to improve their operations and make better decisions. They use a variety of tools and techniques, including data analysis, process modeling, and financial analysis. This course may be useful for this career path because it helps build a foundation for understanding how to build and use CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Consultant
Consultants provide advice and guidance to businesses and organizations. They work on a variety of projects, including strategy development, process improvement, and financial analysis. This course may be useful for this career path because it helps build a foundation for understanding how to build and use CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Marketing Manager
Marketing Managers develop and execute marketing campaigns to promote products and services. They work with a variety of teams, including sales, product development, and customer service. This course may be useful for this career path because it helps build a foundation for understanding how to build and use CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.
Sales Manager
Sales Managers lead and motivate sales teams to achieve revenue goals. They work with customers to identify their needs and develop sales strategies. This course may be useful for this career path because it helps build a foundation for understanding how to build and use CNNs, which are a powerful type of deep learning model that is particularly well-suited for processing images and other data with a grid-like structure.

Reading list

We've selected 11 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Сверточные нейронные сети.
A comprehensive textbook on deep learning, covering a wide range of topics including convolutional neural networks. valuable resource for anyone interested in learning more about deep learning.
Provides a comprehensive overview of computer vision algorithms, including convolutional neural networks. valuable resource for anyone interested in learning more about computer vision.
Provides a comprehensive overview of pattern recognition and machine learning, including convolutional neural networks. valuable resource for anyone interested in learning more about pattern recognition and machine learning.
Эта практичная книга знакомит с концепциями глубокого обучения с использованием популярной библиотеки Python Keras. Она охватывает широкий спектр тем, включая подготовку данных, моделирование и оценку моделей глубокого обучения.
Эта книга предоставляет практический подход к машинному обучению с использованием популярных инструментов Python. Она охватывает широкий спектр тем, включая обработку изображений, обработку естественного языка и глубокое обучение.
Эта книга знакомит с глубоким обучением для компьютерного зрения с использованием Python. Она охватывает ряд тем, включая обработку изображений, обнаружение объектов и сегментацию изображений.
Эта книга знакомит с глубоким обучением с использованием Fastai и PyTorch. Она охватывает широкий спектр тем, включая обработку изображений, обработку естественного языка и обучение с подкреплением.
Эта книга посвящена сверточным нейронным сетям для распознавания изображений. Она охватывает ряд тем, включая архитектуру сверточных нейронных сетей, методы обучения и оценки.
Эта книга является фундаментальным трудом по теории и практике глубокого обучения. Она охватывает широкий спектр тем, включая теоретические основы, алгоритмы и приложения глубоких нейронных сетей.
Эта книга представляет собой всеобъемлющее введение в машинное обучение. Она охватывает широкий спектр тем, включая линейную алгебру, теорию вероятностей и методы машинного обучения.
Эта книга предоставляет практический подход к машинному обучению с использованием популярного языка программирования Python. Она охватывает ряд тем, включая обработку данных, моделирование и оценку моделей машинного обучения.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Сверточные нейронные сети.
Повышение эффективности глубоких нейросетей
Most relevant
Машинное обучение для руководителей
Most relevant
Проектирование интерактивных дашбордов в Tableau
Most relevant
Алгебраическая теория графов
Most relevant
Системное администрирование и службы IT-инфраструктуры
Most relevant
Анализ данных с использованием Python
Most relevant
Последовательные модели
Most relevant
Базы данных и SQL в обработке и анализе данных
Most relevant
Стратегии коммуникации в виртуальную эпоху
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser