This course is the third part of a multi-part course series about one of the main areas of electrical engineering: power system analysis. Power system analysis is the core of power engineering and its understanding is therefore essential for a career in this field. In this third course of the multi-part course series, you will learn about power flow (load flow) analysis and short circuit analysis and their use in power systems. The course is divided into the following sections:
This course is the third part of a multi-part course series about one of the main areas of electrical engineering: power system analysis. Power system analysis is the core of power engineering and its understanding is therefore essential for a career in this field. In this third course of the multi-part course series, you will learn about power flow (load flow) analysis and short circuit analysis and their use in power systems. The course is divided into the following sections:
1. Power Flow (Load Flow) Analysis: in section 2, we will introduce the concept of power flow. Also referred to as load flow, power flow is the analysis of how apparent, real, and reactive power flows between parts of a power system, from generation to the loads. One of the most widely used methods of Power Flow analysis will be covered: the Gauss-Seidel method method. A full example will be solved to help explain how this method is used for power flow analysis.
2. Short Circuit Analysis of Balanced Faults: in section 3, we will introduce short circuits. Also referred to as faults, short circuits are undesired occurrences in power systems when conductors are shorted between each other, to ground, or a combination of these. This is the basis for the field of power system protection and control which is widely important for the safe and reliable operation of power systems. To introduce how short circuits (faults) affect power systems, we will begin by discussing balanced (i.e., three-phase) short circuits. We will also introduce the concept of the short circuit capacity and the bus impedance matrix.
3. Short Circuit Analysis of Unbalanced Faults: in section 4, we will continue discussing short circuits (faults), but will discuss the more complex analysis of unbalanced faults (e.g., single-line-to-ground, line-to-line, and line-to-line-to-ground faults). To do this, we will introduce the technique of symmetrical components, which allows us to analyze unbalanced power systems more easily. This will allow you to further your career in power system protection and protective relaying.
In each section, several examples are solved to illustrate how to analyze real-world power systems.
By learning about power flow analysis and short circuit analysis and how they are used in power systems, you will be able to continue your study of power system analysis for a career in power engineering and electrical engineering.
Remember that Udemy offers a 30-day money-back guarantee. I am also always available for questions while you go through the course to ensure everything is clear.
See you in the course.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.