Save for later

Further Mathematics Year 13 course 2

This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams.

You will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include:

* Fluency – selecting and applying correct methods to answer with speed and efficiency

* Confidence – critically assessing mathematical methods and investigating ways to apply them

* Problem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions

* Constructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others

* Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied

Over eight modules, you will be introduced to

* Simple harmonic motion and damped oscillations.

* Impulse and momentum.

* The work done by a constant and a variable force, kinetic and potential energy (both gravitational and elastic) conservation of energy, the work-energy principle, conservative and dissipative forces, power.

* Oblique impact for elastic and inelastic collision in two dimensions.

* The Poisson distribution, its properties, approximation to a binomial distribution and hypothesis testing.

* The distribution of sample means and the central limit theorem.

* Chi-squared tests, contingency tables, fitting a theoretical distribution and goodness of fit.

* Type I and type II errors in statistical tests.

Your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A -level further mathematics course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.

What you'll learn

  • How to derive and solve a second order differential equation that models simple harmonic motion.
  • How to derive a second order differential equation for damped oscillations.
  • The meaning of underdamping, critical damping and overdamping.
  • How to solve coupled differential equations.
  • How to calculate the impulse of one object on another in a collision.
  • How to use the principle of conservation of momentum to model collisions in one dimension.
  • How to use Newton’s experimental law to model inelastic collisions in one dimension.
  • How to calculate the work done by a force and the work done against a resistive force.
  • How to calculate gravitational potential energy and kinetic energy.
  • How to calculate elastic potential energy.
  • How to solve problems in which energy is conserved.
  • How to solve problems in which some energy is lost through work against a dissipative force.
  • How to calculate power and solve problems involving power.
  • How to model elastic collision between bodies in two dimensions.
  • How to model inelastic collision between two bodies in two dimensions.
  • How to calculate the energy lost in a collision.
  • How to calculate probability for a Poisson distribution.
  • How to use the properties of a Poisson distribution.
  • How to use a Poisson distribution to model a binomial distribution.
  • How to use a hypothesis test to test for the mean of a Poisson distribution.
  • How to estimate a population mean from sample data.
  • How to estimating population variance using the sample variance. How to calculate and interpret the standard error of the mean.
  • How and when to apply the Central Limit Theorem to the distribution of sample means.
  • How to use the Central Limit Theorem in probability calculations, using a continuity correction where appropriate.
  • How to apply the Central Limit Theorem to the sum of n identically distributed independent random variables.
  • How to conduct a chi-squared test with the appropriate number of degrees of freedom to test for independence in a contingency table and interpret the results of such a test.
  • How to fit a theoretical distribution, as prescribed by a given hypothesis involving a given ratio, proportion or discrete uniform distribution, to given data.
  • How to use a chi-squared test with the appropriate number of degrees of freedom to carry out a goodness of fit test.
  • How to calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution.
  • How to calculate probability of making Type I error from tests based on a normal distribution.
  • How to calculate P(Type II error) and power for a hypothesis test for tests based on a normal, Binomial or a Poisson distribution (or any other A level distribution).

Get Details and Enroll Now

OpenCourser is an affiliate partner of edX and may earn a commission when you buy through our links.

Get a Reminder

Send to:
Rating Not enough ratings
Length 7 weeks
Effort 7 weeks, 2–4 hours per week
Starts On Demand (Start anytime)
Cost $69
From Imperial College London via edX
Instructors Philip Ramsden, Phil Chaffe, David Bedford
Download Videos On all desktop and mobile devices
Language English
Subjects Mathematics
Tags Math

Get a Reminder

Send to:

Similar Courses

Careers

An overview of related careers and their average salaries in the US. Bars indicate income percentile.

Learn-to-Swim Instructor $45k

Learn iOS Development $53k

Learn Android Development $66k

Epic LEARN Administrator 2 $104k

Content Editor - Creative Cloud Learn Contractor $119k

Senior Content Editor - Creative Cloud Learn $157k

Write a review

Your opinion matters. Tell us what you think.

Rating Not enough ratings
Length 7 weeks
Effort 7 weeks, 2–4 hours per week
Starts On Demand (Start anytime)
Cost $69
From Imperial College London via edX
Instructors Philip Ramsden, Phil Chaffe, David Bedford
Download Videos On all desktop and mobile devices
Language English
Subjects Mathematics
Tags Math

Similar Courses

Sorted by relevance

Like this course?

Here's what to do next:

  • Save this course for later
  • Get more details from the course provider
  • Enroll in this course
Enroll Now