Crop yield estimation is a critical aspect of modern agriculture. In this course, the wheat crop is covered. The same method applies to all other crops. With the advent of remote sensing and GIS technologies, it has become possible to estimate crop yields using various methodologies. Remote sensing is a powerful tool that can be used to identify and classify different crops, assess crop conditions, and estimate crop yields. One of the most popular methods for crop identification using remote sensing is to relate crop NDVI as a function of yield. This method uses various spectral, textural and structural characteristics of crops to classify them using the machine learning method in ArcGIS. Another popular method for crop condition assessment using remote sensing is crop classification then relate to NDVI index. This method uses indices such as NDVI to assess the health of the crop. Both of these methods are widely used for crop identification and assessment. Crop yield estimation can also be done by using remote sensing data. Yield estimation using remote sensing is done by using statistical methods, such as regression analysis and modelling in GIS and excel, including classification and estimation. One popular method for estimating wheat yield is the crop yield estimation model using classified and modelled data with observed records, as shown in this course. This model uses various remote sensing data to estimate the wheat yield. It is also important to validate the developed model on another nearby study area. That validation of the developed model is also covered in this course. The identification of crops is an important step in estimating crop yields and managing agricultural resources. In summary, remote sensing and GIS technologies are widely used for crop identification, crop condition assessment, and crop yield estimation. They provide accurate and timely information that is critical for managing agricultural resources and increasing crop yields.
Crop yield estimation is a critical aspect of modern agriculture. In this course, the wheat crop is covered. The same method applies to all other crops. With the advent of remote sensing and GIS technologies, it has become possible to estimate crop yields using various methodologies. Remote sensing is a powerful tool that can be used to identify and classify different crops, assess crop conditions, and estimate crop yields. One of the most popular methods for crop identification using remote sensing is to relate crop NDVI as a function of yield. This method uses various spectral, textural and structural characteristics of crops to classify them using the machine learning method in ArcGIS. Another popular method for crop condition assessment using remote sensing is crop classification then relate to NDVI index. This method uses indices such as NDVI to assess the health of the crop. Both of these methods are widely used for crop identification and assessment. Crop yield estimation can also be done by using remote sensing data. Yield estimation using remote sensing is done by using statistical methods, such as regression analysis and modelling in GIS and excel, including classification and estimation. One popular method for estimating wheat yield is the crop yield estimation model using classified and modelled data with observed records, as shown in this course. This model uses various remote sensing data to estimate the wheat yield. It is also important to validate the developed model on another nearby study area. That validation of the developed model is also covered in this course. The identification of crops is an important step in estimating crop yields and managing agricultural resources. In summary, remote sensing and GIS technologies are widely used for crop identification, crop condition assessment, and crop yield estimation. They provide accurate and timely information that is critical for managing agricultural resources and increasing crop yields.
Highlights :
Use Machine learning method for crop classification in ArcGIS, separate crops from natural vegetation
The model was developed using the minimum observed data available online
Crop NDVI separation
Crop Yield model development
Crop production calculation from GIS model data
Identify the low and high-yield zones and area calculation
Calculate the total production of the region
Validation of developed model on another study area
Validate production and yield of other areas using a developed model of another area
Convert the model to the ArcGIS toolbox
You must know:
Basics of GIS
Basics of Excel
Software Requirements:
Any version of ArcGIS 10.0 to 10.8
Excel
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.