Want to ace the AP Statistics exam and also do well in your class? Maybe you are taking an elementary or introductory statistics course in college and need the extra help. We'll help you do it with 90 lessons, including several hours of illustrated lecture video, several worked-out example questions, and a complete understanding of the graphing calculator and its statistical capabilities.
Each lesson also comes with a downloadable word document of course notes to help you learn the material as you watch the video lessons.
Want to ace the AP Statistics exam and also do well in your class? Maybe you are taking an elementary or introductory statistics course in college and need the extra help. We'll help you do it with 90 lessons, including several hours of illustrated lecture video, several worked-out example questions, and a complete understanding of the graphing calculator and its statistical capabilities.
Each lesson also comes with a downloadable word document of course notes to help you learn the material as you watch the video lessons.
Although our course is catered towards high school students taking the AP test, college students in a first year statistics course will also find this class life-saving.
Did we mention you'll also have an awesome teacher?
Jerry Linch obtained his B.S. in Mathematics from the University of Nebraska and M.S. in Statistics from the University of Houston Clear Lake. With several years of practice in the actuarial field, he has an excellent understanding of the material and can explain the concepts at a level which any entry level student can understand. If you want a comprehensive course of all the AP Statistics topics and most all elementary statistics topics covered in a college course and explained with ease, then this course is for you.
Here is a quick intro to AP Statistics and Elementary Statistics Video Series and your instructor, Jerry Linch.
An introduction to the the topic of statistics. The two main branches of statistics are discussed: descriptive statistics and inferential statistics. The definitions of population and sample are discussed.
We talk about discrete and continuous variables in this section and classify data by number of variables.
Frequency and Relative Frequency are discussed, We constructing Bar Charts and Pie Graphs based on our categorical data, Comparative Displays are used to look at differences in distributions.
Graphing small to medium sized data sets. Construction of dotplots and stem-and-leaf plots with comparative displays.
Graphing medium to large sized data sets. Construction of Histograms with density scales included. Construction of Ogives (Cumulative Relative Frequency Graphs).
In this section we discuss the construction of modified boxplots using the 5 number summary statistics of our data. We discuss the calculation of outliers based on the location of fences using the IQR. Multiple boxplots are used in comparative displays to discuss the differences in the features of distributions.
In this section we discuss the construction of modified boxplots using the 5 number summary statistics of our data. We discuss the calculation of outliers based on the location of fences using the IQR. Multiple boxplots are used in comparative displays to discuss the differences in the features of distributions.
Describing Distributions and Graphical Displays. Features of a graph including Center, Shape, Spread and Unusual Occurrences. Each category is discussed.
Measures of Center including: mean, median and mode. Relationships of each and their use in graphical displays. Basic calculations of all measures of center. Resistant measures and trimmed mean are also discussed in this section.
Measures of Center including: mean, median and mode. Relationships of each and their use in graphical displays. Basic calculations of all measures of center. Resistant measures and trimmed mean are also discussed in this section.
Measures of Spread. Range, IQR (Inner Quartile Range), Standard Deviation, Variance and Deviations are all introduced in this section with examples and calculations. Each measure is discussed in its use to describe data.
Measures of Spread. Range, IQR (Inner Quartile Range), Standard Deviation, Variance and Deviations are all introduced in this section with examples and calculations. Each measure is discussed in its use to describe data.
Density curves and Z-Scores are discuessed with formulas and examples. The emperical rule is investigated along with Chebychevs lower bound inequality. Introduction to Normal Bell Shaped Curves. Transition points are introduced as well.
Density curves and Z-Scores are discuessed with formulas and examples. The emperical rule is investigated along with Chebychevs lower bound inequality. Introduction to Normal Bell Shaped Curves. Transition points are introduced as well.
Introduction to Correlation and scatterplots. Pearsons correlation coefficent is developed and investigated. The rules for correlation and examples are given.
Introduction to Correlation and scatterplots. Pearsons correlation coefficent is developed and investigated. The rules for correlation and examples are given.
Investigating the Least Squares Regression Line. This lesson will show us the LSRL is the line of best fit. We will look at calculating the LSRL and its use as a model for linear data. We will also look at the concept of extrapolation.
Residuals and error components are studied in a least squares regression setting. Coefficient of determination is discussed, defined and interpreted. Influential points and outliers are discussed in length in a least squares regression setting.
Residuals and error components are studied in a least squares regression setting. Coefficient of determination is discussed, defined and interpreted. Influential points and outliers are discussed in length in a least squares regression setting.
In this section we investigate residual plots to determine if data is linear. If the data is nonlinear, we transform the variables to achieve a linear model. Logarithmic, exponential, power, quadratic and reciprocal models are considered.
In this section we investigate residual plots to determine if data is linear. If the data is nonlinear, we transform the variables to achieve a linear model. Logarithmic, exponential, power, quadratic and reciprocal models are considered.
Types of Sampling Designs. Advantages and disadvantages of each design with important definitions and concepts in sampling. We discuss a simple random sample, stratified sampling, systematic sampling, cluster sampling and multistage sampling. Definitions of sample design and sampling frame are introduced. The importance of proper sampling is also discussed.
Types of Sampling Designs. Advantages and disadvantages of each design with important definitions and concepts in sampling. We discuss a simple random sample, stratified sampling, systematic sampling, cluster sampling and multistage sampling. Definitions of sample design and sampling frame are introduced. The importance of proper sampling is also discussed.
Observational Study versus Experimentation. Definitions of experimental components are introduced.
Completely randomized designs versus block designed experiments. Matched pairs experiments. Randomization, replication and control of extraneous variables. Concept of confounding variables introduced.
Fundamental Principle of Counting is introduced. Combinations and Permutations are introduced. Examples of counting questions with and without imposed conditions.
Fundamental Principle of Counting is introduced. Combinations and Permutations are introduced. Examples of counting questions with and without imposed conditions.
Sample Space, Event Space, Complement, Union, Intersection, Venn Diagrams, Mutually Exclusive Events, Disjoint Events considered.
Experimental probability, law of large numbers, basic rules of probability, independence, dependence are investigated through examples. The use of complements is considered in calculating probabilities.
Experimental probability, law of large numbers, basic rules of probability, independence, dependence are investigated through examples. The use of complements is considered in calculating probabilities.
Conditional probability introduced. Two way and contingency tables introduced with conditional probability as well as tree diagrams.Basic rules of probability, independence, dependence are investigated through examples.
Conditional probability introduced. Two way and contingency tables introduced with conditional probability as well as tree diagrams.Basic rules of probability, independence, dependence are investigated through examples.
What is a simulation? The steps of a simulation are considered in this video. Introduction to random digit tables and sources of random numbers are considered. Examples of probabilities conducted with simulations. Experimental versus theoretical probability is investigated.
The concept of discrete distributions is discussed and the characteristics of binomial probabilities are presented. Binomial Distributions are investigated and several problems are addressed. The mean and standard deviation of binomial distributions are presented and used in context of problems.
Unusual Density Curves are discussed with basic geometric shapes. Probability density functions are discussed for generic continuous distributions with unusual density curves. The concept of continuous probabilities and random variables are explored. Many examples are given and solved with continuous probabilities.
The normal distribution is discussed. Emperical rule is discussed with examples. Normal bell shaped curves are graphed and discussed. Many problems are explained and solved with normal probabilities. The concept of z scores are discussed and normal probability tables are presented.
The normal distribution is discussed. Emperical rule is discussed with examples. Normal bell shaped curves are graphed and discussed. Many problems are explained and solved with normal probabilities. The concept of z scores are discussed and normal probability tables are presented.
In this section, we assess the normality of data through central limit theorem and graphical displays. Calculator functions are introduced to determine normal continuous probabilities and graphically displaying normal curves. Functions such as normalpdf, normalcdf, invnorm are discussed.
Normal approximations to binomial distributions is considered in this lesson. Approximating binomial distributions with a normal bell shaped curve is addressed with the continuity correction based on the discrete histogram. Several problems are addressed and solved.
Sampling distributions are introduced and discussed. The role of the sampling distribution is introduced to begin inferential statistics. The central limit theorem is discussed. The mean and standard deviation are discussed for sampling distributions. The concept of the mean as an unbiased estimator is presented. Z-scores for sampling distributions are introduced. Examples are presented and solved.
Sampling distributions are introduced and discussed. The role of the sampling distribution is introduced to begin inferential statistics. The central limit theorem is discussed. The mean and standard deviation are discussed for sampling distributions. The concept of the mean as an unbiased estimator is presented. Z-scores for sampling distributions are introduced. Examples are presented and solved.
We begin the inferential section of statistics discussing the confidence interval for a one sample mean procedure. Both z-intervals and t-intervals are discussed and the student’s t-distribution is introduced. Conditions for inference with confidence intervals are explored with Simple Random Sampling. The conditions for normality are evaluated and the calculation of the interval is broken down into its most basic form including the point estimate and the margin of error, made up of the critical value and the standard deviation of the statistic we use to estimate the population parameter value of the mean. Several examples are presented in the construction of a confidence interval. We find the value of the sample size to produce a certain value for our margin of error.
We continue the inferential section of statistics discussing hypothesis tests for a one sample mean procedure. Both z-tests and t-tests are discussed the robustness of the t-distribution is introduced. We examine right tail, left tail and two tailed hypothesis tests. Conditions for inference with hypothesis tests are explored with Simple Random Sampling. The conditions for normality are evaluated and the hypothesis statements for both the null and alternative hypothesis are discussed. Calculation of the test statistic value is addressed as well as the calculation of the p-value associated with the test statistic value. Several examples are presented in the one sample hypothesis test procedures. We also discuss the matched pairs t-test using one sample hypothesis test procedures. The confidence interval is compared to a two-tailed hypothesis test.
We continue the inferential section of statistics discussing hypothesis tests for a one sample mean procedure. Both z-tests and t-tests are discussed the robustness of the t-distribution is introduced. We examine right tail, left tail and two tailed hypothesis tests. Conditions for inference with hypothesis tests are explored with Simple Random Sampling. The conditions for normality are evaluated and the hypothesis statements for both the null and alternative hypothesis are discussed. Calculation of the test statistic value is addressed as well as the calculation of the p-value associated with the test statistic value. Several examples are presented in the one sample hypothesis test procedures. We also discuss the matched pairs t-test using one sample hypothesis test procedures. The confidence interval is compared to a two-tailed hypothesis test.
We continue the inferential section of statistics discussing hypothesis tests for a one sample mean procedure. Both z-tests and t-tests are discussed the robustness of the t-distribution is introduced. We examine right tail, left tail and two tailed hypothesis tests. Conditions for inference with hypothesis tests are explored with Simple Random Sampling. The conditions for normality are evaluated and the hypothesis statements for both the null and alternative hypothesis are discussed. Calculation of the test statistic value is addressed as well as the calculation of the p-value associated with the test statistic value. Several examples are presented in the one sample hypothesis test procedures. We also discuss the matched pairs t-test using one sample hypothesis test procedures. The confidence interval is compared to a two-tailed hypothesis test.
In this lesson, we look at the different errors that are possible in hypothesis testing, their consequences and assess probabilities based on a hypothetical alternate mean. The power of the test is addressed and its relationship to a type II error. We also consider the values of power and probabilities associated with Type I and Type II errors and discuss what is acceptable in practice.
In this lesson, we look at the different errors that are possible in hypothesis testing, their consequences and assess probabilities based on a hypothetical alternate mean. The power of the test is addressed and its relationship to a type II error. We also consider the values of power and probabilities associated with Type I and Type II errors and discuss what is acceptable in practice.
In this lesson, we look at sampling distributions for one sample proportions. We discuss the rules for normality and independence based on sample size and value of parameter. Several problems are presented and solved based on sample data involving proportions.
In this lesson, we look at sampling distributions for one sample proportions. We discuss the rules for normality and independence based on sample size and value of parameter. Several problems are presented and solved based on sample data involving proportions.
In this lesson, we look at one sample inference with proportions. Confidence Intervals and Hypothesis Tests are discussed in this lesson for one sample proportion inference. Conditions for inference are also discussed. We look at the sample size required to achieve a certain margin of error. We discuss the rules for normality and independence based on sample size and value of parameter. Several problems are presented and solved based on sample data involving proportions, using confidence intervals and hypothesis testing.
In this lesson, we look at two sample inference with means. Confidence Intervals and Hypothesis Tests are discussed in this lesson for two sample mean inference. Conditions for inference are also discussed. We look at the differences between mean difference and difference of means, from matched pairs to two independent samples. Several problems are presented and solved based on sample data involving two sample procedures, using confidence intervals and hypothesis testing. We discuss the robustness of t-inference in particular with two sample procedures.
In this lesson, we look at two sample inference with means. Confidence Intervals and Hypothesis Tests are discussed in this lesson for two sample mean inference. Conditions for inference are also discussed. We look at the differences between mean difference and difference of means, from matched pairs to two independent samples. Several problems are presented and solved based on sample data involving two sample procedures, using confidence intervals and hypothesis testing. We discuss the robustness of t-inference in particular with two sample procedures.
In this lesson we discuss two sample inference with proportions. We begin by looking at the sampling distribution of the difference in population proportions. Confidence Intervals and Hypothesis Tests are conducted for the difference in population proportions. The conditions for inference are addressed.
In this lesson we discuss two sample inference with proportions. We begin by looking at the sampling distribution of the difference in population proportions. Confidence Intervals and Hypothesis Tests are conducted for the difference in population proportions. The conditions for inference are addressed.
In this lesson we discuss inference procedures for categorical data. We begin with Chi Square Goodness of Fit tests. Actual data is compared to expected data. Both Chi Square Tests for Independence and Homogeneity are then discussed. We look at two way tables for both tests and find expected counts. The Chi Square Test Statistic is studied as well as the conditions for Chi Square Inference. Examples of Hypothesis Tests are given.
In this lesson, we look at linear regression inference with the construction of both confidence intervals and hypothesis tests. The conditions for inference are addressed. We look at the standard error component and summarized statistical values found in tables. Regression concepts are revisted.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.