Flying drones or robot manipulators accomplish heavy-duty tasks that deal with considerable forces and torques not covered by a purely robot kinematics framework. Learn how to formulate dynamics problems and design appropriate control laws.
Flying drones or robot manipulators accomplish heavy-duty tasks that deal with considerable forces and torques not covered by a purely robot kinematics framework. Learn how to formulate dynamics problems and design appropriate control laws.
In this course, part of the Robotics MicroMasters program, you will learn how to develop dynamic models of robot manipulators, mobile robots, and drones (quadrotors), and how to design intelligent controls for robotic systems that can grasp and manipulate objects.
We will cover robot dynamics, trajectory generation, motion planning, and nonlinear control, and develop real-time planning and control software modules for robotic systems. This course will give you the basic theoretical tools and enable you to design control algorithms.
Using MATLAB, you will apply what you have learned through a series of projects involving real-world robotic systems.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.