We may earn an affiliate commission when you visit our partners.
Course image
Sylvie Méléard, Jean-René Chazottes, and Carl Graham

Ce cours d'introduction aux probabilités a la même contenu que le cours de tronc commun de première année de l'École polytechnique donné par Sylvie Méléard.

Le cours introduit graduellement la notion de variable aléatoire et culmine avec la loi des grands nombres et le théorème de la limite centrale.

Les notions mathématiques nécessaires sont introduites au fil du cours et de nombreux exercices corrigés sont proposés.

Read more

Ce cours d'introduction aux probabilités a la même contenu que le cours de tronc commun de première année de l'École polytechnique donné par Sylvie Méléard.

Le cours introduit graduellement la notion de variable aléatoire et culmine avec la loi des grands nombres et le théorème de la limite centrale.

Les notions mathématiques nécessaires sont introduites au fil du cours et de nombreux exercices corrigés sont proposés.

Ce cours propose aussi une introduction aux méthodes de simulations des variables aléatoires comme la méthode de Monte Carlo. Des expériences numériques interactives sont également mises à votre disposition pour vous permettre de visualiser diverses notions.

Enroll now

What's inside

Syllabus

L'ESPACE DE PROBABILITÉ (1/3)
L'espace de probabilité est l'objet du Cours 1 qui s'étale sur trois semaines. Après une introduction générale, cette semaine est consacrée à la notion d'expérience aléatoire et d'événement aléatoire, puis à la définition d'une probabilité sur un espace d'état fini.
Read more
L'ESPACE DE PROBABILITÉ (2/3)
Nous poursuivons le Cours 1 avec l'étude des lois de probabilités uniformes sur des espaces d'état finis. Puis nous abordons la définition générale d'une probabilité avec notamment la notion de « tribu ».
L'ESPACE DE PROBABILITÉ (3/3)
Nous achevons le Cours 1 cette semaine. Nous introduisons deux concepts centraux : le conditionnement et l'indépendance. Nous étudions ensuite un résultat très utilisé : le théorème de Borel-Cantelli. Enfin, nous introduisons un autre concept incontournable : celui de variable aléatoire.
VARIABLES ALÉATOIRES SUR UN ESPACE FINI OU DÉNOMBRABLE (1/2)
Nous commençons le Cours 2 qui dure deux semaines. Nous étudions les variables aléatoires "discrètes", c'est-à-dire des variables aléatoires prenant un nombre fini ou dénombrable de valeurs.
VARIABLES ALÉATOIRES SUR UN ESPACE FINI OU DÉNOMBRABLE (2/2)
Nous terminons le Cours 2 avec l'introduction d'un outil puissant : les fonctions génératrices. Nous étudions ensuite les couples de variables aléatoires et les variables aléatoires indépendantes.
VARIABLES ALÉATOIRES RÉELLES (1/3)
Le Cours 3, qui s'étend sur trois semaines, est consacré aux variables aléatoires qui prennent leurs valeurs dans les réels. Une nouvelle rubrique fait son apparition : « Méthodes de simulations et expériences numériques interactives ». Chaque séance du type « Illustration & expérimentation : ... » est accompagnée d'une expérience numérique interactive que vous pouvez manipuler (« A vous de jouer ! »).
VARIABLES ALÉATOIRES RÉELLES (2/3)
La notion abordée cette semaine est celle d'espérance d'un variable aléatoire.
VARIABLES ALÉATOIRES RÉELLES (3/3)
Nous terminons cette semaine le Cours 3 avec, d'une part, un résultat important permettant de calculer la loi d'une variable aléatoire et, d'autre part, des inégalités très utiles.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Explores the fundamentals of probability, aligning with the course taught at École polytechnique, a prominent institution in engineering and science
Introduces variable aléatoire—a core concept in probability—and culminates with the presentation of the law of large numbers and the central limit theorem, providing a solid foundation in statistical theory
Employs a progressive approach in introducing probability, which can be beneficial for students encountering the subject for the first time
Provides clear and detailed explanations of mathematical concepts and includes plenty of exercises with solutions to enhance comprehension
Offers interactive simulations and experiments, enabling students to visualize concepts and gain a practical understanding
Taught by Sylvie Méléard, Jean-René Chazottes, and Carl Graham, reputable instructors in the field of probability

Save this course

Save Aléatoire : une introduction aux probabilités - Partie 1 to your list so you can find it easily later:
Save

Reviews summary

Introduction to probability part 1

This course is an introduction to probability theory. It introduces the notion of random variables and culminates with the law of large numbers and the central limit theorem. It also introduces methods for simulating random variables, such as the Monte Carlo method.
Applicable to Many Fields
"The concepts I learned in this course are applicable to many fields."
"I found the material to be very relevant to my work."
"This course gave me a strong foundation in probability theory."
Challenging but Rewarding
"This course was challenging, but I learned a lot."
"The material was difficult, but the professor was very helpful."
"I found this course to be very rewarding."
Clear and Engaging
"The professor was very clear and engaging."
"I found the lectures to be very well-organized and easy to follow."
"The professor was very knowledgeable and passionate about the subject."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Aléatoire : une introduction aux probabilités - Partie 1 with these activities:
Compile materials
Compile all notes, assignments, reviews, and quizzes into a single resource
Show steps
  • Organize notes by date or topic
  • Categorize assignments by difficulty and skill level
  • Put all materials in one notebook, binder, or app
Discuss the Central Limit Theorem with a peer
Discuss the Central Limit Theorem with a peer to better understand it
Show steps
  • Meet with a peer who has also taken the course
  • Summarize how the Central Limit Theorem works
  • Work together to solve practice problems
Learn about Markov Chains with an online tutorial
Expand on the course's discussion about Markov Chains through an external online tutorial
Show steps
  • Find an online tutorial on Markov Chains
  • Follow the tutorial and take notes
  • Use the knowledge gained to solve practice problems
Show all three activities

Career center

Learners who complete Aléatoire : une introduction aux probabilités - Partie 1 will develop knowledge and skills that may be useful to these careers:
Risk Manager
Risk Managers use their knowledge of probability and statistics to assess and manage risk in a variety of settings, including finance, insurance, and healthcare. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and managing risk. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Risk Managers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make risk-informed decisions.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to assess financial risk and make investment decisions. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with financial data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Quantitative Analysts. By taking this course, you will be well-prepared to use probability theory to solve real-world problems in the financial industry.
Business Analyst
Business Analysts use their knowledge of probability and statistics to analyze data and make business decisions. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Business Analysts. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make data-driven business decisions.
Operations Research Analyst
Operations Research Analysts use their knowledge of probability and statistics to solve complex problems in a variety of industries, including manufacturing, transportation, and healthcare. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Operations Research Analysts. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make data-driven decisions.
Statistician
Statisticians use their knowledge of probability and statistics to collect, analyze, and interpret data. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Statisticians. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make data-driven decisions.
Data Analyst
Data Analysts use their expertise in mathematics, statistics, and programming to extract meaningful insights from data. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Data Analysts. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make data-driven decisions.
Data Scientist
Data Scientists use their knowledge of probability and statistics to collect, analyze, and interpret data. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Data Scientists. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make data-driven decisions.
Machine Learning Engineer
Machine Learning Engineers use their knowledge of probability and statistics to develop and implement machine learning models. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with machine learning models. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Machine Learning Engineers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and develop machine learning models.
Data Engineer
Data Engineers use their knowledge of probability and statistics to design and implement data pipelines. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data pipelines. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Data Engineers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and design and implement data pipelines.
Epidemiologist
Epidemiologists use their knowledge of probability and statistics to study the causes and distribution of disease. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with data about disease. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Epidemiologists. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and study the causes and distribution of disease.
Market Researcher
Market Researchers use their knowledge of probability and statistics to collect and analyze data about consumer behavior. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with consumer data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Market Researchers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and collect and analyze data about consumer behavior.
Actuary
Actuaries use their knowledge of probability and statistics to assess and manage financial risk in the insurance industry. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with insurance data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Actuaries. By taking this course, you will be well-prepared to use probability theory to solve real-world problems in the insurance industry.
Financial Analyst
Financial Analysts use their knowledge of probability and statistics to analyze financial data and make investment decisions. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with financial data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Financial Analysts. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and make investment decisions.
Product Manager
Product Managers use their knowledge of probability and statistics to understand user needs and develop product roadmaps. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with user data. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Product Managers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and develop product roadmaps that meet user needs.
Software Engineer
Software Engineers use their knowledge of probability and statistics to develop and implement software systems. This course in probability will provide you with a strong foundation in the fundamentals of probability, which is essential for understanding and working with software systems. The course covers topics such as random variables, probability distributions, and statistical inference, which are all key concepts for Software Engineers. By taking this course, you will be well-prepared to use probability theory to solve real-world problems and develop software systems.

Reading list

We've selected 15 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Aléatoire : une introduction aux probabilités - Partie 1.
Cet ouvrage complet couvre un large éventail de sujets en théorie des probabilités et en processus stochastiques. Il convient aux étudiants avancés et aux chercheurs.
Cet ouvrage de référence aborde l'analyse des données bayésiennes, une approche puissante pour l'inférence statistique. Il est particulièrement utile pour les chercheurs et les praticiens travaillant dans des domaines tels que la santé, les sciences sociales et l'économie.
Ce livre fournit une introduction complète au calcul stochastique continu, avec des applications dans les domaines de la finance et de l'économie. Il est particulièrement adapté aux étudiants avancés et aux chercheurs.
Ce livre fournit une introduction complète aux processus stochastiques, avec un accent particulier sur les applications dans les domaines de l'ingénierie, de la finance et de la biologie.
Ce livre fournit une introduction détaillée aux méthodes statistiques de Monte Carlo, avec des applications dans divers domaines. Il est particulièrement utile pour les chercheurs et les praticiens travaillant dans des domaines tels que la finance, les sciences sociales et l'ingénierie.
Cet ouvrage complet couvre un large éventail de sujets en théorie des probabilités, avec de nombreux exemples et exercices. Il est particulièrement adapté aux étudiants de premier cycle et de deuxième cycle.
Ce manuel offre une présentation claire et accessible des concepts fondamentaux des probabilités. Il est particulièrement adapté aux étudiants de premier cycle en mathématiques ou en statistiques.
Cet ouvrage classique fournit une introduction aux modèles stochastiques, avec des applications dans divers domaines. Il est particulièrement adapté aux étudiants de deuxième cycle et aux chercheurs.
Ce livre fournit une introduction pratique aux processus stochastiques, avec des applications dans les domaines de la science et de l'ingénierie. Il est particulièrement adapté aux étudiants de deuxième cycle et aux chercheurs.
Cet ouvrage complet couvre un large éventail de sujets en simulation et en méthode de Monte Carlo, avec des applications dans divers domaines. Il est particulièrement adapté aux chercheurs et aux praticiens travaillant dans des domaines tels que la finance, les sciences sociales et l'ingénierie.
Ce livre fournit une introduction concise et élégante à la théorie des probabilités, avec un accent sur les concepts fondamentaux. Il est particulièrement adapté aux étudiants de premier cycle en mathématiques.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Aléatoire : une introduction aux probabilités - Partie 1.
Aléatoire : une introduction aux probabilités - Partie 2
Most relevant
Traitement d'images : analyse fréquentielle et multi...
Most relevant
Les coulisses des systèmes de recommandation
Most relevant
Orthography & Pronunciation - French - Advanced
Most relevant
Traitement d'images : segmentation et caractérisation
Most relevant
Physique des particules - une introduction
Most relevant
Modèle d'estimation de l'écart de TVA RA-GAP
Most relevant
Techniques d’intelligence artificielle : des fondements...
Most relevant
Introduction aux Droits de l’Homme
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser