We may earn an affiliate commission when you visit our partners.
Course image
Coursera logo

Physique des particules - une introduction

Martin Pohl and Mercedes Paniccia

Ce cours vous introduit à la physique subatomique, c'est à dire à la physique du noyau et à celle des particules élémentaires.

Plus spécifiquement les questions adressées sont les suivantes :

Read more

Ce cours vous introduit à la physique subatomique, c'est à dire à la physique du noyau et à celle des particules élémentaires.

Plus spécifiquement les questions adressées sont les suivantes :

- Quels sont les concepts de la physique des particules et comment sont-ils implémentés?

- Quelles sont les propriétés du noyau atomique et comment peut on les utiliser?

- Comment accélérer et détecter des particules et mesurer leurs propriétés?

- Qu’est-ce qu’on apprend à partir des réactions de particules à haute énergie et leurs désintégrations?

- Comment fonctionnent les interactions électromagnétiques et comment peut-on les mettre à contribution?

- Comment fonctionnent les interactions fortes et pourquoi sont-elles difficiles à comprendre?

- Comment fonctionnent les interactions faibles et pourquoi sont-elles spéciales?

- Quelle est la masse des objets au niveau subatomique, et comment y intervient le Higgs?

- Que peut-on apprendre de la physique des particules concernant l’astrophysique et l’Univers tout entier?

Le cours est structuré en sept modules. Suivant le premier module qui introduit notre sujet, les modules 2 (Physique nucléaire) et 3 (Accélérateurs et détecteurs) dépendent peu du reste du cours et peuvent être étudiés séparément. Les modules 4 à 7 approfondissent les notions de la matière et des forces élémentaires.

Enroll now

What's inside

Syllabus

Matière et forces, mesurer et compter
Pendant ce premier module on introduira notre sujet en faisant le tour des objets de la physique des particules, c’est à dire la matière, les forces et l’espace-temps. On discutera aussi comment on définit l’intensité d’une interaction entre particules, par le biais de la section efficace, qui est une notion centrale de la physique des particules. A la fin de ce module, on visitera les travaux pratiques nucléaires de l’UniGe pour voir l'expérience Rutherford.
Read more
Physique nucléaire
Pendant ce deuxième module on parle de la physique du noyau atomique et de ses applications. On visitera les travaux pratiques nucléaire de l’UniGe pour voir les expériences sur la radioactivité. A la fin du module, on visitera un réacteur expérimental à fusion et une centrale nucléaire.
Accélérateurs et détecteurs
Dans ce module, on va toucher les bases de la physique des accélérateurs et des méthodes de détection pour les particules. On passera en revue les principes de l'accélération et focalisation de particules chargées par les champs électromagnétiques. On verra comment ces principes sont appliqués dans les accélérateurs et anneau de stockage modernes. Vous serez introduit aux processus physiques qui permettent de détecter les différents types de particules et comment ils sont utilisé dans des détecteurs modernes.
Interactions électromagnétiques
Pendant ce module on discute les interactions électromagnétiques, via l'échange de photons entre particules chargées électriquement. Vous vous rappellerez comment une réaction est décrite par sa section efficace. Vous en saurez plus sur la relation entre cette quantité et les digrammes de Feynman. Comme la matière consiste en fermions, on introduira le spin, mais d'une manière peu formelle. Vous comprendrez mieux les propriétés de quelques réactions exemplaires, comme la diffusion Compton et l'annihilation électron-positron, que vous avez déjà rencontré dans le module 3.
Hadrons et interactions fortes
Dans ce cinquième module vous verrez comment les expériences de diffusion – typiquement utilisant des photons virtuels comme sonde – nous renseignent sur la structure interne des hadrons. Vous apprécierez le rôle des quarks dans la formation de baryons et mesons. Vous comprendrez mieux la notion de la charge couleur et les propriétés des gluons qui transmettent la force forte. Vous verrez comment cette force emprisonne les quarks à l'intérieur de leurs états liés. Et comment par conséquent les quarks fortement secoués (ou crées en paires dans le vide) se transforment en gerbes de hadrons appelés jets.
Interactions électro-faibles
Pendant ce module on approfondit notre discussion des forces en y rajoutant les forces faibles. Vous comprendrez mieux la relation entre particules et antiparticules, moyennant les transformation de conjugaison de charge et de parité. Vous rencontrez les charges faibles et les bosons qui transmettent la force faible. A travers quelques réaction exemplaires, vous apprécierez les spécificités de la force faible et sa relation avec la force électromagnétique. Vous rencontrez les propriétés fascinantes des neutrinos. Et vous serez libéré d'un de vos préjugés, qui dit probablement que la masse des quarks et leptons est une de leurs propriétés intrinsèques.
Matière et énergie sombre
Dans ce dernier module vous rencontrez la matière sombre, qui ne se manifeste que par son action gravitationnel. Vous verrez comment l'énergie sombre accélère l'expansion de notre univers. Vous apprécierez les indices observationnels qui nous démontrent l'existence de ces phénomènes mystérieuses. Et on discutera avec une spécialiste du domaine la nouvelle physique qui pourrait se cacher derrière et qui reste à découvrir.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Explore les concepts et les principes de la physique sou-atomique
Développe une compréhension approfondie de la matière et des forces à l'échelle subatomique
Fournit des connaissances pratiques sur les accélérateurs de particules et les détecteurs utilisés en physique subatomique
Examine la structure interne des hadrons et les propriétés des interactions fortes
Approfondit la compréhension des interactions électrofaibles et de la relation entre les particules et les antiparticules
Explore la matière et l'énergie sombres, soulignant les preuves observationnelles et les théories potentielles

Save this course

Save Physique des particules - une introduction to your list so you can find it easily later:
Save

Reviews summary

Subatomic physics enthusiast's delight

This highly-rated course provides a comprehensive introduction to the fundamentals of subatomic physics. Students consistently praise the engaging teaching style and well-structured content. The course offers a solid understanding of the building blocks of matter and the forces that shape our universe. While math proficiency is recommended, the course avoids using complex equations to ensure accessibility for all learners.
Concepts are explained in a clear and concise manner.
"Lorsqu'on maitrise les prérequis mathématiques pour lire le formalisme , le cours est un parcours innovent de la physique moderne à la fois dans le contenu, la démarche et les évaluations."
"J'ai beaucoup apprécié l'approche globale et en même temps précise de votre cours sur l'introduction à la Physique des Particules."
Professors effectively engage students and make the subject matter interesting.
"Merci beaucoup, grace à ce cours j'ai amélioré mes compréhensions sur le monde subatomique"
"Merci pour cette introduction très réussie sur un sujet intéressant mais complexe, sans rebuter l'audience avec des maths compliquées, et suscitant l'envie d'en savoir plus."
Course assumes some foundational knowledge in mathematics.
"Lorsqu'on maitrise les prérequis mathématiques pour lire le formalisme , le cours est un parcours innovent de la physique moderne à la fois dans le contenu, la démarche et les évaluations."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Physique des particules - une introduction with these activities:
Review the concept of matter and forces
Enhance your understanding of the fundamental concepts of matter and forces, laying a solid foundation for the course.
Show steps
  • Revisit your notes or textbooks from previous courses on physics
  • Review online resources such as Khan Academy or Coursera
  • Solve practice problems to test your comprehension
Solve practice problems on particle interactions
Strengthen your problem-solving skills by practicing diverse particle interaction scenarios.
Show steps
  • Gather a collection of practice problems from textbooks or online resources
  • Allocate dedicated study time to solve the problems
  • Compare your solutions with provided answers or consult with a tutor for guidance
Develop a concept map or visual representation
Create a visual representation to organize and connect different concepts, fostering a deeper understanding of the relationships between them.
Browse courses on Concept Mapping
Show steps
  • Identify the key concepts and their interconnections
  • Choose a suitable visual format, such as a mind map, flowchart, or diagram
  • Develop the visual representation, connecting the concepts and illustrating their relationships
  • Review and refine your visual representation for clarity and accuracy
One other activity
Expand to see all activities and additional details
Show all four activities
Seek guidance from experts in the field
Connect with professionals working in subatomic physics to gain insights, ask questions, and expand your knowledge.
Show steps
  • Identify potential mentors through professional organizations or research institutions
  • Reach out to individuals and express your interest in their work
  • Build a mutually beneficial relationship based on shared interests and professional development goals

Career center

Learners who complete Physique des particules - une introduction will develop knowledge and skills that may be useful to these careers:
Accelerator Physicist
Accelerator Physicists design, build, and operate particle accelerators. They use these accelerators to study the fundamental constituents of matter and the forces that act between them. This course would be helpful for Accelerator Physicists because it would provide them with a strong foundation in the physics of particle interactions.
High Energy Physicist
High Energy Physicists study the behavior of matter at very high energies. They use particle accelerators to smash particles together and study the resulting debris. This course would be helpful for High Energy Physicists because it would provide them with a strong foundation in the physics of particle interactions.
Particle Physicist
Particle Physicists study the fundamental constituents of matter and the forces that act between them. They use particle accelerators to smash particles together and study the resulting debris. This course would be helpful for Particle Physicists because it would provide them with a strong foundation in the physics of particle interactions.
Medical Physicist
Medical Physicists use their knowledge of physics to develop and use medical imaging techniques, such as X-rays and MRI scans. They also work with radiation therapy to treat cancer. This course would be helpful for Medical Physicists because it would provide them with a strong foundation in the physics of radiation and its interactions with matter.
Nuclear Medicine Technologist
Nuclear Medicine Technologists use radioactive isotopes to diagnose and treat diseases. They work with patients to prepare them for scans and then operate the equipment that produces the images. This course would be helpful for Nuclear Medicine Technologists because it would provide them with a strong foundation in the physics of radiation and its interactions with matter.
Radiologist
Radiologists use imaging techniques, such as X-rays and MRI scans, to diagnose and treat diseases. They work with patients to determine the best course of treatment and then interpret the images to make a diagnosis. This course would be helpful for Radiologists because it would provide them with a strong foundation in the physics of radiation and its interactions with matter.
Health Physicist
Health Physicists are responsible for protecting people from the harmful effects of radiation. They work in a variety of settings, such as nuclear power plants, hospitals, and research laboratories. This course would be helpful for Health Physicists because it would provide them with a strong foundation in the physics of radiation and its interactions with matter.
Radiation Therapist
Radiation Therapists use radiation to treat cancer. They work with patients to develop a treatment plan and then deliver the radiation therapy. This course would be helpful for Radiation Therapists because it would provide them with a strong foundation in the physics of radiation and its interactions with matter.
Nuclear Engineer
Nuclear Engineers are responsible for the design, construction, and operation of nuclear power plants. They use their knowledge of physics to ensure that these plants are safe and efficient. This course would be helpful for Nuclear Engineers because it would provide them with a strong foundation in the physics of nuclear reactions and the properties of nuclear materials.
Nuclear Chemist
Nuclear Chemists use radioactive isotopes to study the structure and properties of atoms and molecules. They also work to develop new ways to use radioactive isotopes in medicine and industry. This course would be helpful for Nuclear Chemists because it would provide them with a strong foundation in the physics of nuclear reactions and the properties of nuclear materials.
Nuclear Power Plant Operator
Nuclear Power Plant Operators are responsible for the safe and efficient operation of nuclear power plants. They work with a team of engineers and technicians to monitor the plant's systems and respond to any emergencies. This course would be helpful for Nuclear Power Plant Operators because it would provide them with a strong foundation in the physics of nuclear reactions and the properties of nuclear materials.
Astrophysicist
Astrophysicists study the physical properties of stars, planets, galaxies, and other celestial objects. They use telescopes and other instruments to collect data about these objects and then use this data to develop theories about how they work. This course would be helpful for Astrophysicists because it would provide them with a strong foundation in the physics of matter and the forces that act between them.
Cosmologist
Cosmologists study the origin and evolution of the universe. They use telescopes and other instruments to collect data about the universe and then use this data to develop theories about how it came into being and how it has changed over time. This course would be helpful for Cosmologists because it would provide them with a strong foundation in the physics of matter and the forces that act between them.
High School Physics Teacher
High School Physics Teachers teach physics to students in grades 9-12. They develop lesson plans, conduct experiments, and grade students' work. This course may be helpful for High School Physics Teachers because it would provide them with a strong foundation in the physics of matter and the forces that act between them. This knowledge would help them to develop engaging and informative lessons for their students.
Elementary School Science Teacher
Elementary School Science Teachers teach science to students in grades K-5. They develop lesson plans, conduct experiments, and grade students' work. This course may be helpful for Elementary School Science Teachers because it would provide them with a strong foundation in the physics of matter and the forces that act between them. This knowledge would help them to develop engaging and informative lessons for their students.

Reading list

We've selected 12 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Physique des particules - une introduction.
Provides a comprehensive overview of the field of high-energy physics, including the Standard Model of particle physics, accelerators, and detectors. It would be a valuable reference for students taking this course.
Provides a clear and concise introduction to quantum field theory, which is the theoretical framework for particle physics.
Provides a personal and historical account of the development of particle physics, from the discovery of the atom to the Standard Model.
Provides a clear and accessible introduction to the concept of symmetry in physics, which fundamental principle in particle physics.
Provides an introduction to string theory, which theoretical framework that seeks to unify all of the forces of nature.
Provides an introduction to loop quantum gravity, which theoretical framework that seeks to quantize gravity.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Physique des particules - une introduction.
Les deux infinis et nous - Voyages de l'infiniment grand...
Most relevant
Les deux infinis et nous
Most relevant
Vers l'infiniment petit - Voyages de l'infiniment grand à...
Most relevant
Vers l'infiniment petit
Most relevant
Principes de base du support technique
Most relevant
Planification de projet : Tout mettre en place
Most relevant
Mécanique quantique
Most relevant
Traitement d'images : introduction au filtrage
Most relevant
Planification de projet : Tout mettre en place
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser