We may earn an affiliate commission when you visit our partners.
Course image
ELINGUI Pascal Uriel

Dans ce projet guidé, vous manipulerez des séries temporelles avec Python et Pandas. Une série temporelle est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. Les données du COVID-19 en sont un parfait exemple que nous allons explorer dans ce projet guidé.

Read more

Dans ce projet guidé, vous manipulerez des séries temporelles avec Python et Pandas. Une série temporelle est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. Les données du COVID-19 en sont un parfait exemple que nous allons explorer dans ce projet guidé.

La grande majorité des données que nous exploitons sont des séries temporelles. Savoir les manipuler efficacement est un prérequis obligatoire pour tous professionnel des données. (Data Scientist, Data Analyst, Data Engineer, Ingénieur Big Data, etc)

Vous expérimentez plusieurs techniques pour indexer, filtrer, agréger, échantillonner et afficher des séries temporelles en python

Enroll now

What's inside

Syllabus

Project Overview
Dans ce projet guidé, vous manipulerez des séries temporelles avec Python et Pandas. Une série temporelle est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. Les données du COVID-19 en sont un parfait exemple que nous allons explorer dans ce projet guidé.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Well suited for data professionals looking to enhance their time series manipulation skills
Covers key techniques for working with time series data in Python, including indexing, filtering, aggregation, sampling, and visualization
Leverages real-world COVID-19 data for practical examples and relevance
Taught by experienced instructors in the field of data science
Suitable for learners who have prior experience in Python and data handling
May require additional resources or background knowledge for beginners in data science

Save this course

Save COVID-19 : Les séries temporelles avec Python et Pandas to your list so you can find it easily later:
Save

Reviews summary

Recommended covid-19 time series python pandas

This course on manipulating COVID-19 time series data with Python Pandas is well received by students. They particularly appreciate the practical exercises and well-structured content.
structured content
"...well-structured content."
practical exercises
"...practical exercises..."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in COVID-19 : Les séries temporelles avec Python et Pandas with these activities:
Créer un référentiel de notes et de ressources
Vous allez organiser vos notes, vos devoirs, vos quiz et vos examens en un référentiel central, ce qui vous permettra de revoir efficacement le matériel et de vous préparer aux évaluations.
Show steps
  • Rassembler tous les supports de cours pertinents
  • Créer un système de fichiers ou un cahier numérique pour organiser les matériaux
  • Noter les concepts clés et les résumés de chaque section
  • Inclure des liens vers des ressources en ligne ou des vidéos supplémentaires
Pratiquer l'indexation et le filtrage de séries temporelles
Vous allez vous familiariser avec les opérations de base des séries temporelles, ce qui vous permettra de manipuler efficacement les données de vos projets futurs.
Show steps
  • Ouvrir un notebook Jupyter
  • Importer la bibliothèque Pandas
  • Charger des données de séries temporelles dans un DataFrame
  • Pratiquer l'indexation en utilisant loc et iloc
  • Explorer les options de filtrage en utilisant des expressions booléennes
Créer des visualisations de séries temporelles avec Matplotlib et Seaborn
Vous allez apprendre à créer des visualisations claires et informatives de vos données de séries temporelles, ce qui facilitera l'identification des tendances et des anomalies.
Show steps
  • Explorer les différents types de visualisations de séries temporelles
  • Installer les bibliothèques Matplotlib et Seaborn
  • Appliquer des techniques de tracé pour représenter vos données
  • Personnaliser vos graphiques pour plus de clarté et d'impact
One other activity
Expand to see all activities and additional details
Show all four activities
Participer à des séances d'étude avec d'autres étudiants
Vous allez échanger des idées, partager des connaissances et clarifier les concepts avec d'autres étudiants, ce qui améliorera votre compréhension et votre rétention.
Show steps
  • Rejoindre un groupe d'étude ou en créer un avec d'autres étudiants
  • Préparer les sujets à aborder et les questions à poser
  • Participer activement aux discussions et partager vos perspectives
  • Résumer les points clés et les enregistrer pour référence future

Career center

Learners who complete COVID-19 : Les séries temporelles avec Python et Pandas will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists apply computational and analytical approaches to solve complex problems and extract meaningful insights from large datasets. A course in COVID-19 Time Series with Python and Pandas may enhance your data analysis skills and equip you with the necessary knowledge to manage and interpret COVID-19 related data. The course's focus on time series analysis, indexing, filtering, and aggregation of data can benefit Data Scientists aiming to understand and make predictions based on time-dependent data.
Data Analyst
Data Analysts utilize various techniques to examine data patterns and trends, and communicate insights to stakeholders. The course in COVID-19 Time Series with Python and Pandas aligns with the role of a Data Analyst, as it provides practical experience in handling COVID-19 time series data. Understanding data manipulation, visualization, and forecasting techniques covered in the course can enhance your analytical abilities and enable you to derive valuable insights from data.
Data Engineer
Data Engineers design, build, and manage data pipelines to ensure data quality and availability. A course in COVID-19 Time Series with Python and Pandas can be beneficial for Data Engineers as it provides hands-on experience in data preprocessing, data cleaning, and data transformation. The course also covers techniques for data visualization, which is essential for communicating data insights to stakeholders.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze financial data and make investment decisions. A course in COVID-19 Time Series with Python and Pandas can be relevant for Quantitative Analysts as it provides a foundation in time series analysis and forecasting techniques. The course's focus on data manipulation and visualization can also be beneficial for understanding and presenting financial data.
Machine Learning Engineer
Machine Learning Engineers design, develop, and maintain machine learning models for various applications. A course in COVID-19 Time Series with Python and Pandas may be useful for Machine Learning Engineers as it provides a foundation in data manipulation, feature engineering, and model evaluation. The course's focus on time series analysis can also be relevant for building predictive models based on time-dependent data.
Epidemiologist
Epidemiologists investigate the causes and patterns of health and disease within populations. A course in COVID-19 Time Series with Python and Pandas can be relevant for Epidemiologists as it provides hands-on experience in handling COVID-19 related data. The course's focus on data analysis, visualization, and forecasting can assist Epidemiologists in understanding disease trends, identifying risk factors, and developing prevention strategies.
Biostatistician
Biostatisticians apply statistical methods to analyze biological and medical data. A course in COVID-19 Time Series with Python and Pandas may be useful for Biostatisticians as it provides a foundation in time series analysis and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing epidemiological data.
Public Health Analyst
Public Health Analysts use data to identify and address public health issues. A course in COVID-19 Time Series with Python and Pandas can be relevant for Public Health Analysts as it provides experience in handling and analyzing COVID-19 related data. The course's focus on data visualization and forecasting can assist Public Health Analysts in communicating data insights to stakeholders and developing evidence-based public health policies.
Health Data Analyst
Health Data Analysts analyze healthcare data to improve patient outcomes and healthcare delivery. A course in COVID-19 Time Series with Python and Pandas may be useful for Health Data Analysts as it provides a foundation in data manipulation, data visualization, and forecasting. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing healthcare data in general.
Business Analyst
Business Analysts use data to solve business problems and improve organizational performance. A course in COVID-19 Time Series with Python and Pandas may be useful for Business Analysts as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing business data in sectors affected by the pandemic.
Financial Analyst
Financial Analysts use data to analyze financial performance and make investment recommendations. A course in COVID-19 Time Series with Python and Pandas may be useful for Financial Analysts as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing financial data in sectors affected by the pandemic.
Actuary
Actuaries use mathematical and statistical methods to assess risk and uncertainty. A course in COVID-19 Time Series with Python and Pandas may be useful for Actuaries as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing actuarial data in sectors affected by the pandemic.
Statistician
Statisticians use mathematical and statistical methods to analyze data and draw conclusions. A course in COVID-19 Time Series with Python and Pandas may be useful for Statisticians as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing statistical data in sectors affected by the pandemic.
Data Visualization Specialist
Data Visualization Specialists create visual representations of data to communicate insights and trends. A course in COVID-19 Time Series with Python and Pandas may be useful for Data Visualization Specialists as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and visualizing data in sectors affected by the pandemic.
Research Analyst
Research Analysts gather, analyze, and interpret data to inform decision-making. A course in COVID-19 Time Series with Python and Pandas may be useful for Research Analysts as it provides a foundation in data manipulation and data visualization. The course's focus on handling COVID-19 data can also be relevant for understanding and analyzing research data in sectors affected by the pandemic.

Reading list

We've selected eight books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in COVID-19 : Les séries temporelles avec Python et Pandas.
Ce livre classique sur l'analyse des séries temporelles fournit une couverture complète des méthodes théoriques et pratiques. Il est utile à la fois comme référence et comme manuel pour les étudiants et les praticiens.
Ce livre pratique se concentre sur les méthodes de prévision des séries temporelles. Il couvre un large éventail de techniques, des méthodes traditionnelles aux approches modernes basées sur l'apprentissage automatique.
Ce livre fournit une introduction complète à Python pour l'analyse des données. Il couvre les concepts fondamentaux, les outils et les techniques pour manipuler, analyser et visualiser les données, y compris les séries temporelles.
Ce livre se concentre sur l'analyse des séries temporelles dans R. Il couvre un large éventail de méthodes, des techniques classiques aux approches modernes basées sur R.
Ce livre fournit une introduction à l'analyse des séries temporelles à l'aide de R. Il couvre les concepts fondamentaux et les méthodes pour manipuler, analyser et modéliser les séries temporelles.
Cet autre livre classique sur l'analyse des séries temporelles fournit une couverture complète des méthodes théoriques et pratiques. Il est utile à la fois comme référence et comme manuel pour les étudiants et les praticiens.
Ce livre se concentre sur les méthodes statistiques pour l'analyse des séries temporelles. Il couvre les techniques classiques, telles que les modèles ARIMA et les tests de stationnarité.
Ce livre fournit une introduction accessible à l'analyse des séries temporelles et à la prévision. Il couvre les concepts fondamentaux, les méthodes et les applications dans divers domaines.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to COVID-19 : Les séries temporelles avec Python et Pandas.
Fondamentaux du Système de Base de Données
Most relevant
Comprendre la Syntaxe de Base de SQL.
Most relevant
Agrégation de Données avec des Requêtes SQL
Most relevant
Choisir la Meilleure Méthode pour Illustrer les Données
Most relevant
Fondamentaux de la science des données
Most relevant
Les Expressions Lambda et Java
Most relevant
Introduction à l'analyse de données à l'aide d'Excel
Most relevant
Cours intensif sur la science des données
Most relevant
Déployer des conteneurs Docker avec Amazon ECS et Fargate
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser