The transistor has been called the greatest invention of the 20th century - it enabled the electronics systems that have shaped the world we live in. Today's nanotransistors are a high volume, high impact success of the nanotechnology revolution. This is a course on how this scientifically interesting and technologically important device operates. The course is designed for anyone seeking a sound, physical, intuitive understanding of how modern transistors operate. Important technology considerations and applications of transistors are also discussed. The focus is on MOSFETs for digital logic, but analog applications and other types of transistors are briefly considered.
The transistor has been called the greatest invention of the 20th century - it enabled the electronics systems that have shaped the world we live in. Today's nanotransistors are a high volume, high impact success of the nanotechnology revolution. This is a course on how this scientifically interesting and technologically important device operates. The course is designed for anyone seeking a sound, physical, intuitive understanding of how modern transistors operate. Important technology considerations and applications of transistors are also discussed. The focus is on MOSFETs for digital logic, but analog applications and other types of transistors are briefly considered.
This course is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits. Topics include device metrics for digital and analog circuits, traditional MOSFET theory, the virtual source model, 1D and 2D electrostatics, Landauer/transmission approach to nanotransistors, the limits of MOSFETs, as well as a quick look at HEMTs, bipolar transistors, and compact circuit models. The course should be useful for advanced undergraduates, beginning graduate students, as well as practicing engineers and scientists.
This course is part of a Purdue initiative that aims to complement the expertise that students develop with the breadth at the edges needed to work effectively in today's multidisciplinary environment. These serious short courses require few prerequisites and provide a general framework that can be filled in with self-study when needed.
Students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software.
Completed exams will be scanned and sent using Gradescope for grading.
Fundamentals of Transistors is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nanoscience and Technology. For further information and other courses offered and planned, please see the Nanoscience and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.