This course introduces the Schrödinger equation, using the tight-binding method to discuss the concept of bandstructure and E(k) relations, followed by an introduction to the NEGF method with simple illustrative examples. Concept of spinors is introduced along with the application of the NEGF method to spintronic devices.
This course introduces the Schrödinger equation, using the tight-binding method to discuss the concept of bandstructure and E(k) relations, followed by an introduction to the NEGF method with simple illustrative examples. Concept of spinors is introduced along with the application of the NEGF method to spintronic devices.
No prior background in quantum mechanics or statistical mechanics is assumed.
Verified students taking this course will be required to complete three (3) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.
Nanoscience and Technology MicroMasters ®
Introduction to Quantum Transport is one course in a growing suite of unique, one-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.
For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.