このレクチャーでは,コンピュータビジョンやパターン認識,画像処理などで使われる数式や考え方,数学的手法を学びます.基礎的な連立方程式の解き方とその解釈,微分と最適化,回帰とスパースモデリング,制約付き最適化問題と凸最適化,識別などの基本的な考え方を,数式を通して理解し,いくつかの問題についてはPythonコードを使って理解を深めます.特に連立方程式Ax=bというよく見かける数式を題材に,顔画像の近似問題としていろいろな手法が定式化できること,また解き方があることを学びます.
レクシャースライドPDFです.ファイルは***slide.pdfです(映像撮影時の古いものも残してありますが,新しいほうは誤植などを修正してあります).
演習問題の解答例のファイルは***answer.pdfです.
演習用のコードはリンクのgithubを参照してください.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.