We may earn an affiliate commission when you visit our partners.
Course image
Coursera logo

Введение в механику деформируемого твёрдого тела (Introduction to the mechanics of deformable solids)

Петров Юрий Викторович and Волков Григорий Александрович
Этот краткий курс создан на основе лекций чл.-корр. РАН, проф. Ю.В.Петрова, которые читаются им на математико-механическом факультете СПбГУ для студентов старших курсов, желающих продолжить учебу в аспирантуре и подготовиться к соответствующим вступительным...
Read more
Этот краткий курс создан на основе лекций чл.-корр. РАН, проф. Ю.В.Петрова, которые читаются им на математико-механическом факультете СПбГУ для студентов старших курсов, желающих продолжить учебу в аспирантуре и подготовиться к соответствующим вступительным экзаменам. В курсе не ставится задача систематического изложения механики сплошной среды. Основная идея - помочь разобраться в ряде ключевых начальных понятий механики континуума, освоение которых зачастую вызывает у учащихся затруднения. Основными объектами, которые используются для описания формоизменения и силового взаимодействия в механике сплошных сред, являются тензоры деформации и напряжений. Обычно введение этих тензоров деформации Грина и Альманси связано с рассмотрением координатных систем отсчёта Эйлера и Лагранжа. Очень часто студенты ошибочно полагают, что эти тензоры являются одним и тем же тензором деформации, записанным в разных системах координат. Ещё более запутанная ситуация возникает с тензорами напряжений Пиола, Кирхгофа и тензором истинных напряжений. В данном курсе мы попробуем разобраться в этом вопросе, используя достаточно нестандартный подход, в котором будет чётко определены различия между всеми вышеперечисленными тензорами деформации и напряжений. Также обсудим, в каких ситуациях удобнее решать задачи теории упругости с помощью записи основных соотношений в терминах того или иного тензора деформации и напряжений. Кроме того, будут рассмотрены основные постановки задач теории упругости в напряжениях и перемещениях, и будут исследованы простейшие частные случаи для этих задач. На примере некоторых из них будет показано единство основополагающих принципов природы, распространяющихся на различные области механики и физики. Курс состоит из 13 уроков. Урок 1-4 посвящен элементам тензорной алгебры и геометрическому описанию деформации сплошных сред. Определяются тензоры деформации Грина и Альманзи, обсуждается их геометрический смысл. В последующих трёх уроках 5-7 приводятся различные способы описания напряжённого состояния в сплошных средах. Показываются отличия и особенности тензоров истинных напряжения, Пиола и Кирхгоффа друг от друга. В уроках 8-10 даются эмпирическое и энергетическое определения упругих сред и обсуждается постановка задачи механики для них в терминах поля перемещений. В уроках 11-13 показывается, как могут выглядеть основные уравнения механики сплошных сред в частных случаях. Также обсуждается единообразие принципов законов природы, описывающих совершенно разные физические явления.
Enroll now

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Suitable for advanced undergraduates and graduate students in engineering, mathematics, or physics who seek to expand their knowledge in continuum mechanics
Provides a solid foundation for students preparing for further study or research in the field
Led by experienced instructors who are recognized experts in continuum mechanics research
Emphasizes the fundamental concepts of continuum mechanics, including tensor analysis, deformation, and stress analysis
Uses a unique approach to clearly differentiate between various deformation and stress tensors
Covers essential aspects of elasticity theory, including constitutive modeling and boundary value problems
May require students to have some background knowledge in tensor algebra and continuum mechanics for optimal understanding

Save this course

Save Введение в механику деформируемого твёрдого тела (Introduction to the mechanics of deformable solids) to your list so you can find it easily later:
Save

Reviews summary

Intro to deformable solids mechanics

This course provides a solid introduction to the mechanics of deformable solids and covers several key concepts in the field. It is suitable for students looking to pursue further studies in mechanics.
Well-structured course with clear explanations of concepts.
"Excellent course. I was happy to complete the tasks ..."

Activities

Coming soon We're preparing activities for Введение в механику деформируемого твёрдого тела (Introduction to the mechanics of deformable solids). These are activities you can do either before, during, or after a course.

Career center

Learners who complete Введение в механику деформируемого твёрдого тела (Introduction to the mechanics of deformable solids) will develop knowledge and skills that may be useful to these careers:
Mechanical Engineer
Mechanical Engineers design, build, and maintain machines and other mechanical systems. They apply scientific, engineering, and mathematical principles to ensure that these systems operate safely and efficiently. An understanding of mechanics and deformation is key to designing machines that can withstand the forces of motion and gravity without breaking or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Mechanical Engineers.
Aerospace Engineer
Aerospace Engineers research, design, develop, test, and oversee the production of aircraft, spacecraft, and missiles. They apply scientific, engineering, and mathematical principles to solve complex problems in flight, propulsion, and structural design. An understanding of mechanics and deformation is key to ensuring that aircraft and spacecraft are strong enough to withstand the forces of flight without breaking or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Aerospace Engineers.
Structural Engineer
Structural Engineers design and build structures that can withstand the forces of gravity, wind, and earthquakes. They apply scientific, engineering, and mathematical principles to ensure that these structures are safe and durable. An understanding of mechanics and deformation is key to ensuring that structures can withstand these forces without collapsing or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Structural Engineers.
Computational Mechanics Engineer
Computational Mechanics Engineers develop and use computer simulations to analyze the behavior of solids, fluids, and structures. They use these simulations to design new products and processes, and to improve the performance of existing ones. An understanding of mechanics and deformation is key to developing accurate and reliable simulations. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Computational Mechanics Engineers.
Naval Architect
Naval Architects design and build ships and other marine structures. They apply scientific, engineering, and mathematical principles to ensure that these structures are safe, durable, and efficient. An understanding of mechanics and deformation is key to ensuring that ships can withstand the forces of wind, waves, and currents without breaking or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Naval Architects.
Robotics Engineer
Robotics Engineers design, build, and maintain robots. They apply scientific, engineering, and mathematical principles to ensure that robots operate safely and efficiently. An understanding of mechanics and deformation is key to designing robots that can withstand the forces of motion and gravity without breaking or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Robotics Engineers.
Materials Engineer
Materials Engineers develop and test new materials for a wide range of applications, including aerospace, automotive, and biomedical. They study the properties of materials to understand how they behave under different conditions. An understanding of mechanics and deformation is key to understanding how materials behave under stress. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Materials Engineers.
Architectural Engineer
Architectural Engineers design, plan, and oversee the construction of buildings and other structures. They apply scientific, engineering, and mathematical principles to ensure that buildings are safe, durable, and energy-efficient. An understanding of mechanics and deformation is key to ensuring that buildings can withstand the forces of gravity, wind, and earthquakes without collapsing or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Architectural Engineers.
Nuclear Engineer
Nuclear Engineers design, build, and operate nuclear power plants. They also develop new methods for generating nuclear energy. An understanding of mechanics and deformation is key to ensuring that nuclear power plants are safe and efficient. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Nuclear Engineers.
Geotechnical Engineer
Geotechnical Engineers design and build foundations for buildings and other structures. They also study the behavior of soil and rock to ensure that these structures are safe and stable. An understanding of mechanics and deformation is key to understanding how soil and rock behave under load. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Geotechnical Engineers.
Biomechanical Engineer
Biomechanical Engineers apply the principles of engineering and mechanics to the human body. They design and develop medical devices, prosthetics, and rehabilitation equipment. They also study the mechanics of human movement to improve athletic performance and prevent injuries. An understanding of mechanics and deformation is key to understanding how the human body moves and how to design devices that can help people move better. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Biomechanical Engineers.
Mining Engineer
Mining Engineers design and oversee the construction of mines. They also develop methods for extracting minerals from the earth. An understanding of mechanics and deformation is key to designing mines that are safe and efficient. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Mining Engineers.
Forensic Engineer
Forensic Engineers investigate the causes of accidents and failures. They use scientific, engineering, and mathematical principles to determine what happened and why. An understanding of mechanics and deformation is key to understanding how structures fail. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Forensic Engineers.
Petroleum Engineer
Petroleum Engineers design and oversee the drilling of oil and gas wells. They also develop methods for extracting oil and gas from the earth. An understanding of mechanics and deformation is key to designing wells that are safe and efficient. This course will provide you with a strong foundation in the mechanics of deformable solids, which is critical for Petroleum Engineers.
Civil Engineer
Civil Engineers design, build, and maintain the infrastructure of our society, including roads, bridges, buildings, and water systems. They apply scientific, engineering, and mathematical principles to ensure that these structures are safe, durable, and efficient. An understanding of mechanics and deformation is key to ensuring that these structures can withstand the forces of gravity, wind, and earthquakes without collapsing or deforming excessively. This course will provide you with a strong foundation in the mechanics of deformable solids, which is a critical area of study for Civil Engineers.

Reading list

We haven't picked any books for this reading list yet.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Введение в механику деформируемого твёрдого тела (Introduction to the mechanics of deformable solids).
Теория функций комплексного переменного
Most relevant
Алгебраическая теория графов
Most relevant
Зоопсихология
Most relevant
Линейная алгебра: матрицы и отображения
Most relevant
Представление презентации
Most relevant
Линейная регрессия
Most relevant
Коронавирусы SARS-CoV-2 и возбудители ОРВИ
Most relevant
Продвинутые методы машинного обучения
Most relevant
Квантовая механика. Часть 1. Принципы квантовой механики
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser