We may earn an affiliate commission when you visit our partners.
Course image
Mohamed AL ashram

Unleash your inner cheesemaker  learn the art of transforming milk into delicious cheese .it is  hands-on, lecture-based,

    Is it informal and fun, or focused and intensive

, you'll master essential techniques curdling, pressing, aging, flavor development  . By the end, you'll be able to : make specific cheeses, understand cheesemaking principles

history

Read more

Unleash your inner cheesemaker  learn the art of transforming milk into delicious cheese .it is  hands-on, lecture-based,

    Is it informal and fun, or focused and intensive

, you'll master essential techniques curdling, pressing, aging, flavor development  . By the end, you'll be able to : make specific cheeses, understand cheesemaking principles

history

Cheesemaking may have originated from nomadic herdsmen who stored milk in vessels made from sheep's and goats' stomachs. Because their stomach linings contain a mix of lactic acid, bacteria as milk contaminants and rennet, the milk would ferment and coagulate. A product reminiscent of yogurt would have been produced, which through gentle agitation and the separation of curds from whey would have resulted in the production of cheese; the cheese being essentially a concentration of the major milk protein, casein, and milk fat. The whey proteins, other major milk proteins, and lactose are all removed in the cheese whey. Another theory is offered by David Asher, who wrote that the origins actually lie within the "sloppy milk bucket in later European culture, it having gone unwashed and containing all of the necessary bacteria to facilitate the ecology of cheese

Ancient cheesemaking

One of the ancient cheesemakers' earliest tools for cheesemaking, cheese molds or strainers, can be found throughout Europe, dating back to the Bronze Age. Baskets were used to separate the cheese curds, but as technology advanced, these cheese molds would be made of wood or pottery. The cheesemakers placed the cheese curds inside of the mold, secured the mold with a lid, then added pressure to separate the whey, which would drain out from the holes in the mold. The more whey that was drained, the less moisture retained in the cheese. Less moisture meant that the cheese would be firmer. In Ireland, some cheeses ranged from a dry and hard cheese (mullahawn) to a semi-liquid cheese (millsén)

The designs and patterns were often used to decorate the cheeses and differentiate between them. Since many monastic establishments and abbeys owned their share of milk animals at the time, it was commonplace for the cheeses they produced to bear a cross in the middle.

Although the common perception of cheese today is made from cow's milk, goat's milk was actually the preferred base of ancient cheesemakers, due to the fact that goats are smaller animals than cows. This meant that goats required less food and were easier to transport and herd. Moreover, goats can breed any time of the year as opposed to sheep, who also produce milk, but mating season only came around during fall and winter.

Before the age of pasteurization, cheesemakers knew that certain cheeses could cause constipation or kidney stones, so they advised their customers to supplement these side effects by eating in moderation along with other foods and consuming walnuts, almonds, or horseradish

the process

The goal of cheese making is to control the spoiling of milk into cheese. The milk is traditionally from a cow, goat, sheep, or buffalo, although, in theory, cheese could be made from the milk of any mammal. Cow's milk is most commonly used worldwide. The cheesemaker's goal is a consistent product with specific characteristics (appearance, aroma, taste, texture). The process used to make a Camembert will be similar to, but not quite the same as, that used to make Cheddar.

Some cheeses may be deliberately left to ferment from naturally airborne spores and bacteria; this approach generally leads to a less consistent product but one that is valuable in a niche market.

Culturing

Cheese is made by bringing milk (possibly pasteurized) in the cheese vat to a temperature required to promote the growth of the bacteria that feed on lactose and thus ferment the lactose into lactic acid. These bacteria in the milk may be wild, as is the case with unpasteurized milk, added from a culture, frozen or freeze dried concentrate of starter bacteria. Bacteria which produce only lactic acid during fermentation are homofermentative; those that also produce lactic acid and other compounds such as carbon dioxide, alcohol, aldehydes and ketones are heterofermentative. Fermentation using homofermentative bacteria is important in the production of cheeses such as Cheddar, where a clean, acid flavor is required. For cheeses such as Emmental the use of heterofermentative bacteria is necessary to produce the compounds that give characteristic fruity flavors and, importantly, the gas that results in the formation of bubbles in the cheese ('eye holes').

Starter cultures are chosen to give a cheese its specific characteristics. In the case of mold-ripened cheese such as Stilton, Roquefort or Camembert, mold spores (fungal spores) may be added to the milk in the cheese vat or can be added later to the cheese curd.

Coagulation

During the fermentation process, once sufficient lactic acid has been developed, rennet is added to cause the casein to precipitate. Rennet contains the enzyme chymosin which converts κ-casein to para-κ-caseinate (the main component of cheese curd, which is a salt of one fragment of the casein) and glycomacropeptide, which is lost in the cheese whey. As the curd is formed, milk fat is trapped in a casein matrix. After adding the rennet, the cheese milk is left to form curds over a period of time.

Fresh chevre hanging in cheesecloth to drain.

Draining

Once the cheese curd is judged to be ready, the cheese whey must be released. As with many foods the presence of water and the bacteria in it encourages decomposition. To prevent such decomposition it is necessary to remove most of the water (whey) from the cheese milk, and hence cheese curd, to make a partial dehydration of the curd. There are several ways to separate the curd from the whey.

Maturing cheese in a cheese cellar

Scalding

In making Cheddar (or many other hard cheeses) the curd is cut into small cubes and the temperature is raised to approximately 39 °C (102 °F) to 'scald' the curd particles. Syneresis occurs and cheese whey is expressed from the particles. The Cheddar curds and whey are often transferred from the cheese vat to a cooling table which contains screens that allow the whey to drain, but which trap the curd. The curd is cut using long, blunt knives and 'blocked' (stacked, cut and turned) by the cheesemaker to promote the release of cheese whey in a process known as 'cheddaring'. During this process the acidity of the curd increases to a desired level. The curd is then milled into ribbon shaped pieces and salt is mixed into it to arrest acid development. The salted green cheese curd is put into cheese moulds lined with cheesecloths and pressed overnight to allow the curd particles to bind together. The pressed blocks of cheese are then removed from the cheese moulds and are either bound with muslin-like cloth, or waxed or vacuum packed in plastic bags to be stored for maturation. Vacuum packing removes oxygen and prevents mold (fungal) growth during maturation, which depending on the wanted final product may be a desirable characteristic or not.

Mold-ripening

Main article: Cheese ripening

In contrast to cheddaring, making cheeses like Camembert requires a gentler treatment of the curd. It is carefully transferred to cheese hoops and the whey is allowed to drain from the curd by gravity, generally overnight. The cheese curds are then removed from the hoops to be brined by immersion in a saturated salt solution. The salt absorption stops bacteria growing, as with Cheddar. If white mold spores have not been added to the cheese milk it is applied to the cheese either by spraying the cheese with a suspension of mold spores in water or by immersing the cheese in a bath containing spores of, e.g., Penicillium candida.

By taking the cheese through a series of maturation stages where temperature and relative humidity are carefully controlled, allowing the surface mold to grow and the mold-ripening of the cheese by fungi to occur. Mold-ripened cheeses ripen very quickly compared to hard cheeses (weeks against months or years). This is because the fungi used are biochemically very active when compared with starter bacteria. Some cheeses are surface-ripened by molds, such as Camembert and Brie, some are ripened internally, such as Stilton, which is pierced with stainless steel wires, to admit air to promote mould spore germination and growth, as with Penicillium Roquefort. Surface ripening of some cheeses, such as Saint-Nectaire, may also be influenced by yeasts which contribute flavor and coat texture. Others are allowed to develop bacterial surface growths which give characteristic color's and appearances, e.g., by the growth of Brevibacterium linens which gives an orange coat to cheeses.

Enroll now

Here's a deal for you

We found an offer that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Learning objectives

  • Introduction cheese is diverse bases milk based food
  • History of making cheese
  • Different types of cheese
  • Processing of cheese milk
  • Rennet
  • Curd manfacture

Syllabus

introduction
history
Introduction
instructor
Read more
Reference of the courser
Course reference2
Reference culture
cheese making
course content
overview
Milk Intolerance
cheese types
cheese classification
milk composition seasonality
Milk composition and seasonality
types of cheese
milk processing for making cheese
milk processing
cheese styles
steps of manfacture
manfacture steps
first hard cheese
examples for recipes
examples of cocked brine
examples of hard semihard
cheese recipe website
culture and fermented dairy product
culture fermented dairy product

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Explores characteristics of cheese which is standard in the dairy industry
Teaches cheesemaking at the level of a hands-on lab and lecture series
Taught by Mohamed AL Ashram, who is recognized for their work in cheesemaking
Examines cheesemaking at a level which is appropriate for a beginner
Provides a historical overview of cheesemaking
Covers types of cheese which is standard in the food industry
Students expected to come in with some background with food safety & kitchen equipment
This course focuses on cheese and does not cover other dairy products

Save this course

Save From Milk to Magic: The Transformative Power of Cheesemaking to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in From Milk to Magic: The Transformative Power of Cheesemaking with these activities:
Watch Tutorials on Cheesemaking Techniques
Supplement the course content with practical demonstrations and visual aids, enhance understanding of complex techniques and steps
Show steps
  • Identify specific cheesemaking techniques or areas where additional guidance is needed
  • Locate and watch video tutorials on those techniques
  • Practice the techniques under the guidance of the tutorials
Sensory Evaluation Practice
Refine sensory evaluation skills, develop a discerning palate for identifying and distinguishing different cheese characteristics
Show steps
  • Engage in guided sensory evaluation sessions
  • Practice identifying and describing various cheese attributes
  • Compare and contrast different cheeses based on their sensory characteristics
Start a Home Cheesemaking Experiment
Immerse yourself in practical application of course principles, make concrete every phase and step of the process
Show steps
  • Design a cheesemaking experiment, including the type of cheese, the milk source, and the desired flavor profile
  • Gather necessary equipment and ingredients
  • Follow cheesemaking steps as outlined in course materials, experiment with variations of the process
  • Document the process and record observations, including the results of the experiment
Three other activities
Expand to see all activities and additional details
Show all six activities
Attend a Local Cheesemakers' Guild Meeting
Connect with experienced cheesemakers, gain insights into real-world industry practices and trends
Show steps
  • Identify local cheesemakers' guilds or organizations
  • Attend a meeting or event hosted by the guild
  • Network with cheesemakers and learn about their experiences and expertise
Create a Recipe Workbook
Synthesize knowledge of cheesemaking into a practical resource that can be utilized for future reference and experimentation
Show steps
  • Compile a collection of cheese recipes from various sources
  • Standardize the recipes into a consistent format
  • Create a well-organized and user-friendly recipe workbook
Develop a Cheese Grading Rubric
Develop a deeper understanding of the sensory evaluation of cheese, establish a standardized method for evaluating and comparing different cheeses
Show steps
  • Research and identify key sensory attributes of cheese
  • Develop a scoring system for each attribute
  • Create a comprehensive cheese grading rubric

Career center

Learners who complete From Milk to Magic: The Transformative Power of Cheesemaking will develop knowledge and skills that may be useful to these careers:

Reading list

We haven't picked any books for this reading list yet.

Share

Help others find this course page by sharing it with your friends and followers:
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser