Earnings Management
This week we are going to examine "earnings management", which is the practice of trying to intentionally bias financial statements to look better than they really should look. Beginning with an overview of earnings management, we’ll cover means, motive, and opportunity: how managers actually make their earnings look better, their incentives for manipulating earnings, and how they get away with it. Then, we will investigate red flags for two different forms of revenue manipulation. Manipulating earnings through aggressive revenue recognition practices is the most common reason that companies get in trouble with government regulators for their accounting practices. Next, we will discuss red flags for manipulating earnings through aggressive expense recognition practices, which is the second most common reason that companies get in trouble for their accounting practices. By the end of this module, you’ll know how to spot earnings management and get a more accurate picture of earnings, so that you’ll be able to catch some bad guys in finance reporting!
Big Data and Prediction Models
This week, we’ll use big data approaches to try to detect earnings management. Specifically, we're going to use prediction models to try to predict how the financial statements would look if there were no manipulation by the manager. First, we’ll look at Discretionary Accruals Models, which try to model the non-cash portion of earnings or "accruals," where managers are making estimates to calculate revenues or expenses. Next, we'll talk about Discretionary Expenditure Models, which try to model the cash portion of earnings. Then we'll look at Fraud Prediction Models, which try to directly predict what types of companies are likely to commit frauds. Finally, we’ll explore something called Benford's Law, which examines the frequency with which certain numbers appear. If certain numbers appear more often than dictated by Benford's Law, it's an indication that the financial statements were potentially manipulated. These models represent the state of the art right now, and are what academics use to try to detect and predict earnings management. By the end of this module, you'll have a very strong tool kit that will help you try to detect financial statements that may have been manipulated by managers.
Linking Non-financial Metrics to Financial Performance
Linking non-financial metrics to financial performance is one of the most important things we do as managers, and also one of the most difficult. We need to forecast future financial performance, but we have to take non-financial actions to influence it. And we must be able to accurately predict the ultimate impact on financial performance of improving non-financial dimensions. In this module, we’ll examine how to uncover which non-financial performance measures predict financial results through asking fundamental questions, such as: of the hundreds of non-financial measures, which are the key drivers of financial success? How do you rank or weight non-financial measures which don’t share a common denominator? What performance targets are desirable? Finally, we’ll look at some comprehensive examples of how companies have used accounting analytics to show how investments in non-financial dimensions pay off in the future, and finish with some important organizational issues that commonly arise using these models. By the end of this module, you’ll know how predictive analytics can be used to determine what you should be measuring, how to weight very, very different performance measures when trying to analyze potential financial results, how to make trade-offs between short-term and long-term objectives, and how to set performance targets for optimal financial performance.