We may earn an affiliate commission when you visit our partners.
Course image
Pablo Agustin Martinez

Este Proyecto Guiado ETL pipelines con Python: recopila datos de Spotify es para aquellos apasionados por descubrir los secretos musicales ocultos en la vasta biblioteca de Spotify. En este curso basado en proyectos de 1.5 horas de duración, aprenderás cómo: Extraer y transformar datos detallados sobre preferencias musicales desde la API de Spotify utilizando Python y aplicar técnicas de visualización para comunicar claramente los insights musicales a través de gráficos y presentaciones interactivas. Para lograr esto, trabajaremos a través de las siguientes tareas: Configuración del entorno de desarrollo con Python, Obtención de credenciales de la API de Spotify y consultas iniciales, Prácticas para explorar datos extraídos, identificar patrones y tendencias y Ejercicios sobre el uso de herramientas de Business Intelligence para crear visualizaciones interactivas y presentar insights musicales.

Read more

Este Proyecto Guiado ETL pipelines con Python: recopila datos de Spotify es para aquellos apasionados por descubrir los secretos musicales ocultos en la vasta biblioteca de Spotify. En este curso basado en proyectos de 1.5 horas de duración, aprenderás cómo: Extraer y transformar datos detallados sobre preferencias musicales desde la API de Spotify utilizando Python y aplicar técnicas de visualización para comunicar claramente los insights musicales a través de gráficos y presentaciones interactivas. Para lograr esto, trabajaremos a través de las siguientes tareas: Configuración del entorno de desarrollo con Python, Obtención de credenciales de la API de Spotify y consultas iniciales, Prácticas para explorar datos extraídos, identificar patrones y tendencias y Ejercicios sobre el uso de herramientas de Business Intelligence para crear visualizaciones interactivas y presentar insights musicales.

Este proyecto es único porque no solo te sumergirás en el mundo de la programación y el análisis de datos, sino que lo harás a través de la lente musical de Spotify. Para tener éxito, se recomienda tener conocimientos básicos de Python y un interés genuino en descubrir las historias que los datos musicales tienen para contar. ¡Prepárate para explorar y analizar la música desde una perspectiva única!

Enroll now

Two deals to help you save

What's inside

Syllabus

Visión general del proyecto
Aquí describirá de qué trata el proyecto... dará una visión general de lo que el alumno conseguirá al completar este proyecto.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Se enfoca en el análisis de datos musicales de Spotify, lo cual es de interés particular para los entusiastas de la música
Brinda una visión general del proceso ETL (Extracción, Transformación y Carga) de datos en Python, una habilidad esencial en el análisis de datos
Enseña técnicas de visualización de datos para comunicar los resultados del análisis de forma clara y atractiva
Requiere conocimientos básicos de Python, lo que puede ser una barrera para los principiantes absolutos

Save this course

Save ETL pipelines con Python: recopila datos de Spotify to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in ETL pipelines con Python: recopila datos de Spotify with these activities:
Review Python basics
Refreshes foundational knowledge of Python programming concepts and prepares you for subsequent coursework.
Browse courses on Python
Show steps
  • Review Python data types, variables, and operators.
  • Practice writing simple Python programs.
  • Review Python control flow and functions.
Explore Spotify's API documentation
Gain insights into the capabilities of the Spotify API to effectively navigate and utilize it for data extraction.
Browse courses on Spotify API
Show steps
  • Visit the Spotify Developers website and access API documentation.
  • Review authentication methods and API endpoints.
  • Follow guided tutorials to make API requests and handle responses.
Formar un grupo de estudio
Participar en un grupo de estudio con tus compañeros te permitirá colaborar, compartir ideas y obtener apoyo adicional para las tareas del proyecto.
Show steps
  • Conectar con otros estudiantes del curso y formar un grupo de estudio.
  • Establecer un horario regular para las sesiones de estudio.
  • Compartir notas, discutir conceptos y trabajar juntos en ejercicios de práctica.
Five other activities
Expand to see all activities and additional details
Show all eight activities
Explore the Spotify API
Develops proficiency in using the Spotify API to extract musical data directly from the source.
Browse courses on Spotify API
Show steps
  • Follow official Spotify API documentation.
  • Experiment with API calls to retrieve different types of musical data.
  • Build a small Python script that utilizes the API.
Extract and transform musical data from Spotify
Provides hands-on experience in extracting and transforming raw musical data from Spotify to prepare it for analysis.
Browse courses on Data Extraction
Show steps
  • Write Python code to connect to the Spotify API.
  • Retrieve data on specific artists, albums, or tracks.
  • Clean and preprocess the extracted data for analysis.
Develop data visualizations to communicate musical insights
Fosters skills in communicating complex musical data clearly and effectively through interactive visualizations.
Browse courses on Data Visualization
Show steps
  • Choose appropriate data visualization techniques for the insights you want to convey.
  • Use Python libraries to create interactive visualizations.
  • Present your visualizations in a clear and engaging manner.
Develop an interactive dashboard of musical insights
Demonstrate your understanding of data presentation by creating a dynamic and engaging dashboard that showcases key musical trends and insights.
Show steps
  • Identify key metrics and trends to display on the dashboard.
  • Select appropriate visualization techniques to effectively convey insights.
  • Use Python libraries such as Plotly or Dash to create the interactive dashboard.
Crear una presentación sobre los insights musicales
Crear una presentación que comunique los insights musicales extraídos de los datos de Spotify te permitirá consolidar tu comprensión y mejorar tus habilidades de comunicación.
Show steps
  • Analizar los datos transformados para identificar patrones, tendencias e insights musicales.
  • Diseñar una presentación clara e impactante, utilizando herramientas de visualización como gráficos, tablas y mapas de calor.
  • Preparar un discurso conciso y atractivo que guíe a la audiencia a través de los insights musicales.

Career center

Learners who complete ETL pipelines con Python: recopila datos de Spotify will develop knowledge and skills that may be useful to these careers:
Data Analyst
A Data Analyst is responsible for collecting, cleaning, and analyzing data to provide insights to businesses. This course can help build a foundation for a career as a Data Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as data exploration and pattern identification, which are essential skills for Data Analysts.
Data Engineer
A Data Engineer is responsible for designing, building, and maintaining data pipelines. This course can help build a foundation for a career as a Data Engineer by providing learners with experience in extracting, transforming, and loading data. The course also covers topics such as data integration and data quality, which are essential skills for Data Engineers.
Data Scientist
A Data Scientist is responsible for using data to solve business problems. This course can help build a foundation for a career as a Data Scientist by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as machine learning and statistical modeling, which are essential skills for Data Scientists.
Business Analyst
A Business Analyst is responsible for understanding and improving business processes. This course can help build a foundation for a career as a Business Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as process mapping and requirements gathering, which are essential skills for Business Analysts.
Market Researcher
A Market Researcher is responsible for collecting and analyzing data about consumers and markets. This course can help build a foundation for a career as a Market Researcher by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as survey design and data analysis, which are essential skills for Market Researchers.
Product Manager
A Product Manager is responsible for developing and managing products. This course can help build a foundation for a career as a Product Manager by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as user research and product development, which are essential skills for Product Managers.
Sales Analyst
A Sales Analyst is responsible for analyzing sales data to identify trends and opportunities. This course can help build a foundation for a career as a Sales Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as sales forecasting and data mining, which are essential skills for Sales Analysts.
Financial Analyst
A Financial Analyst is responsible for analyzing financial data to make investment decisions. This course can help build a foundation for a career as a Financial Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as financial modeling and data analysis, which are essential skills for Financial Analysts.
Operations Research Analyst
An Operations Research Analyst is responsible for using data to solve operational problems. This course can help build a foundation for a career as an Operations Research Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as optimization and simulation, which are essential skills for Operations Research Analysts.
Software Engineer
A Software Engineer is responsible for designing, developing, and maintaining software applications. This course can help build a foundation for a career as a Software Engineer by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as software design and data structures, which are essential skills for Software Engineers.
Web Developer
A Web Developer is responsible for designing and developing websites. This course can help build a foundation for a career as a Web Developer by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as web design and programming, which are essential skills for Web Developers.
Database Administrator
A Database Administrator is responsible for managing and maintaining databases. This course can help build a foundation for a career as a Database Administrator by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as database design and data security, which are essential skills for Database Administrators.
Network Administrator
A Network Administrator is responsible for managing and maintaining computer networks. This course may be useful for building a foundation for a career as a Network Administrator by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as network design and security, which are essential skills for Network Administrators.
Computer Systems Analyst
A Computer Systems Analyst is responsible for analyzing and designing computer systems. This course may be useful for building a foundation for a career as a Computer Systems Analyst by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as systems analysis and design, which are essential skills for Computer Systems Analysts.
Technical Writer
A Technical Writer is responsible for creating technical documentation. This course may be useful for building a foundation for a career as a Technical Writer by providing learners with experience in extracting, transforming, and visualizing data. The course also covers topics such as technical writing and information design, which are essential skills for Technical Writers.

Reading list

We've selected 11 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in ETL pipelines con Python: recopila datos de Spotify.
Este libro práctico guía a los estudiantes a través del análisis de datos con Pandas, la biblioteca principal utilizada en este proyecto. Proporciona una base sólida para la manipulación, exploración y visualización de datos, lo que es esencial para extraer insights musicales significativos.
Este manual completo cubre una amplia gama de temas de ciencia de datos, desde el procesamiento de datos hasta el modelado estadístico. Proporciona una referencia valiosa para los estudiantes que buscan profundizar su comprensión de los conceptos y técnicas subyacentes al proyecto.
Este libro es una guía esencial para el uso de Python para el análisis de datos. Proporciona una base sólida para los estudiantes que son nuevos en Python o desean mejorar sus habilidades, lo que les permite aprovechar al máximo las capacidades de Python para la manipulación y el análisis de datos.
Este libro inspirador explora el arte y la ciencia de la visualización de datos. Proporciona una visión única sobre cómo comunicar de manera efectiva los insights de los datos a través de visualizaciones atractivas y fáciles de entender.
Este libro proporciona una introducción integral a las herramientas de código abierto para el análisis de datos. Es una guía valiosa para los estudiantes que buscan aprovechar las capacidades de software gratuito y de código abierto para sus proyectos de análisis de datos.
Este libro es una introducción completa a Python. Proporciona una base sólida para los estudiantes que son nuevos en Python o desean repasar los conceptos básicos, lo que les permite aprovechar eficazmente las capacidades de Python para el análisis de datos.
Este libro de texto clásico proporciona una cobertura integral de los conceptos y técnicas de minería de datos. Es una referencia valiosa para los estudiantes que buscan profundizar su comprensión de los métodos y algoritmos utilizados para extraer patrones e insights a partir de grandes conjuntos de datos.
Este libro es una guía práctica para automatizar tareas con Python. Proporciona una base valiosa para los estudiantes que son nuevos en la automatización o desean mejorar sus habilidades, lo que les permite automatizar los procesos repetitivos relacionados con la extracción y el procesamiento de datos.
Este libro proporciona una introducción completa a la ciencia de datos desde una perspectiva empresarial. Ofrece una base sólida para comprender los conceptos y técnicas fundamentales de la ciencia de datos, lo que es beneficioso para contextualizar el proyecto y aplicar los insights a escenarios del mundo real.
Este libro es una guía práctica para el uso de Python para el aprendizaje automático. Aunque no es directamente relevante para el proyecto, proporciona una base valiosa para los estudiantes que estén interesados en explorar más a fondo los algoritmos y técnicas de aprendizaje automático.
Este libro ofrece una introducción al razonamiento bayesiano y su aplicación en el análisis de datos. Aunque no es directamente relevante para el proyecto, proporciona una base valiosa para los estudiantes que estén interesados en explorar más a fondo los métodos bayesianos para el análisis de datos.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to ETL pipelines con Python: recopila datos de Spotify.
Descubriendo funciones trigonométricas con Python
Most relevant
Descubriendo funciones trigonométricas inversas con Python
Most relevant
Minería de Datos: Segmentación de Mercados
Most relevant
Análisis de datos con programación en R
Most relevant
Tabulando funciones trigonométricas inversas con Python
Most relevant
Graficando funciones trigonométricas inversas con Python
Most relevant
Tabulando funciones trigonométricas con Python
Most relevant
Tabulando funciones cuadráticas con Python
Most relevant
Graficando funciones trigonométricas con Python
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser