Geometric algorithms are a category of computational methods used to solve problems related to geometric shapes and their properties. These algorithms deal with objects like points, lines, polygons, and other geometric figures.
Geometric algorithms are a category of computational methods used to solve problems related to geometric shapes and their properties. These algorithms deal with objects like points, lines, polygons, and other geometric figures.
In many areas of computer science such as robotics, computer graphics, virtual reality, and geographic information systems, it is necessary to store, analyze, and create or manipulate spatial data. This course deals with the algorithmic aspects of these tasks: we study techniques and concepts needed for the design and analysis of geometric algorithms and data structures. Each technique and concept will be illustrated on the basis of a problem arising in one of the application areas mentioned above.
Goals:
At the end of this course participants should be able
- to decide which algorithm or data structure to use in order to solve a given basic geometric problem,
- to analyze new problems and come up with their own efficient solutions using concepts and techniques from the course.
Prerequisites:
In order to successfully take this course, you should already have a basic knowledge of algorithms and mathematics. Here's a short list of what you are supposed to know:
- O-notation, Ω-notation, Θ-notation; how to analyze algorithms
- Basic calculus: manipulating summations, solving recurrences, working with logarithms, etc.
- Basic probability theory: events, probability distributions, random variables, expected values etc.
- Basic data structures: linked lists, binary search trees, etc.
- Graph terminology
- Programming skills for practical assignments
Most of the material in this course is based on the following book:
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications (3rd edition). Springer-Verlag, 2008.
It is not mandatory to buy this book. However if participants want to know more than is offered in this course or want to have another look at the material discussed in the lectures, we recommend buying this book.
The video lectures contain a few very minor mistakes. A list of these mistakes can be found under resources. If you think you found an error, report a problem by clicking the square flag at the bottom of the lecture or quiz where you found the error.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.