We may earn an affiliate commission when you visit our partners.
Course image
Astrid Bernal, Mario Castillo, and Daniela Angulo

El curso está orientado a profesionales de diferentes campos, que estén interesados en adquirir conceptos fundamentales de estadística aplicada. El contenido del curso será particularmente útil para profesionales que estén interesados en adelantar estudios de postgrado en ingeniería, administración o economía, entre otras profesiones, y que requieran de una adecuada fundamentación en estadística. También será de utilidad para estudiantes universitarios que deseen reforzar o complementar su formación básica en estadística, aprovechando los diferentes recursos con los que cuenta este MOOC.

Read more

El curso está orientado a profesionales de diferentes campos, que estén interesados en adquirir conceptos fundamentales de estadística aplicada. El contenido del curso será particularmente útil para profesionales que estén interesados en adelantar estudios de postgrado en ingeniería, administración o economía, entre otras profesiones, y que requieran de una adecuada fundamentación en estadística. También será de utilidad para estudiantes universitarios que deseen reforzar o complementar su formación básica en estadística, aprovechando los diferentes recursos con los que cuenta este MOOC.

o La estadística es un campo de la matemática aplicada que se ocupa de la recolección, descripción y análisis de datos. Actualmente, esta disciplina no es solo fundamental para el ejercicio de la ingeniería, la economía y las ciencias básicas, sino que cada vez es más importante en aspectos de la vida moderna. Múltiples artículos son publicados diariamente en periódicos y revistas a través de los cuales se pretenden explicar tendencias sociales o económicas, siendo evidente que la estadística no solo es importante para ser un buen profesional, sino también para ser un miembro de la sociedad bien informado.

o Las aplicaciones de la Estadística van desde la organización de grandes cantidades de datos, pasando por la caracterización de los clientes de una compañía o individuos de una región, hasta el diseño de campañas de mercadotecnia más eficientes, y el desarrollo de políticas sociales. Algo a lo que se atribuye el gran éxito de los japoneses en la industria de la manufactura, durante el siglo XX, es al uso de métodos estadísticos y al pensamiento estadístico del personal gerencial, lo cual permitió enfocar la atención en el análisis y uso de los datos para mejorar la calidad y eficiencia de sus procesos de fabricación.

o El curso tiene como objetivo principal que los participantes adquieran una formación sólida en los conceptos más importantes de estadística, y sus aplicaciones. En este curso haremos especial énfasis en que logres una adecuada comprensión del análisis descriptivo de datos estadísticos, así como de los métodos básicos para la estimación de parámetros poblacionales, finalizando con el entendimiento de los modelos de Regresión Lineal Simple y Múltiple, y las oportunidades de aplicación de dichos modelos.

o El curso tiene un buen balance entre el rigor en el tema y la presentación del contenido de una forma sencilla, con base en ejemplos que abordan situaciones reales simplificadas, y cuenta con videos y ejercicios orientados a facilitar la comprensión de los conceptos que se cubren en este curso.

Enroll now

What's inside

Syllabus

Módulo sin título
Distribuciones muestrales y estadística descriptiva
Bienvenidos al primer módulo de este curso donde haremos una introducción al mundo de la estadística. En este módulo trataremos conceptos básicos de estadística descriptiva y de estimación de parámetros poblacionales. Al final de este módulo serás capaz de: calcular, interpretar y analizar las principales estadísticas descriptivas de un conjunto de datos; y de construir estimadores, y comprender e interpretar sus propiedades básicas y sus aplicaciones.
Read more
Intervalos de confianza
En este módulo nos ocuparemos de estudiar la construcción, análisis e interpretación de los intervalos de confianza de uso más común en las aplicaciones. Al final de este módulo serás capaz de: construir, calcular e interpretar intervalos de confianza
Pruebas de Hipótesis
En este módulo nos ocuparemos de estudiar las definiciones de hipótesis nula e hipótesis alterna, prueba estadística y región crítica, errores tipo I y tipo II, así como la construcción de pruebas de hipótesis de uso más común en las aplicaciones. Al final de este módulo serás capaz de: identificar, formular y evaluar las pruebas de hipótesis estadísticas de mayor aplicación.
Regresión Lineal
En este módulo nos ocuparemos de la formulación de modelos de regresión lineal simple y múltiple, así como el análisis e interpretación de sus resultados. Al final de este módulo serás capaz de: construir modelos de regresión lineal simple y múltiple, interpretar sus resultados y verificar sus supuestos.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Enseña conceptos esenciales de estadística para quienes desean profundizar sus conocimientos en campos técnicos o administrativos
Desarrolla habilidades analíticas y estadísticas, fortaleciendo la comprensión de datos y su aplicación en la toma de decisiones
Imparte fundamentos estadísticos esenciales para aspirantes a estudios de posgrado en ingeniería, economía y administración

Save this course

Save Fundamentos de estadística aplicada to your list so you can find it easily later:
Save

Reviews summary

Well-received applied statistics course

This course provides a solid foundation in fundamental statistics principles and their application. It particularly emphasizes understanding descriptive data analysis, basic methods for estimating population parameters, and linear regression modeling. The course is well-balanced between theory and practical examples using simplified real-life situations, supported by videos and exercises. It received positive feedback from students who appreciated its comprehensive content, clarity, and practical approach.
Covers all the essential topics of descriptive and inferential statistics.
"Buen curso, cubre lo mas importante en modelos estadisticos y te da el conocimiento necesario para prepararte para examenes de esta area del conocimiento"
Content is presented in an easy-to-understand manner, with real-life examples.
"El curso tiene un buen balance entre el rigor en el tema y la presentación del contenido de una forma sencilla, con base en ejemplos que abordan situaciones reales simplificadas..."
Concepts are explained clearly, with well-paced lectures and examples.
"Muy buen curso. La explicación de los conceptos es clara y se proporcionan ejemplos para comprenderlos mejor."
Emphasizes practical applications, making the concepts relatable.
"Excelente y practica la manera de enseñar los temas de los fundamentos de la estadistica aplicada."
Students mentioned a lack of exercises, particularly in the final unit.
"Aprendí! sí, eso no es cuestionable y se agradece. Sin embargo, hubo muy pocos ejercicios en la última unidad..."
Some students expressed difficulty accessing related tables and software.
"Nunca encontré las tablas que ellos explicaban en las lecciones."
"Se implementó un software licenciado el cual no se utilizó..."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Fundamentos de estadística aplicada with these activities:
Revise statistical concepts
Revising statistical concepts will help you refresh your memory and improve your understanding of the material covered in the course.
Browse courses on Statistical Concepts
Show steps
  • Review your notes from previous statistics courses.
  • Read a textbook or online resource on basic statistics.
  • Take practice quizzes or exams to test your knowledge.
Develop a cheat sheet of statistical formulas
Creating a cheat sheet of statistical formulas can help you quickly and easily access the formulas you need to solve problems.
Show steps
  • Gather a list of the statistical formulas that are covered in the course.
  • Create a cheat sheet that includes the formulas and their descriptions.
  • Use the cheat sheet to help you solve practice problems.
Watch video tutorials on statistical methods
Watching video tutorials on statistical methods can help you learn new concepts and reinforce your understanding of the material covered in the course.
Browse courses on Statistical Methods
Show steps
  • Find video tutorials on statistical methods that are relevant to the course material.
  • Watch the videos and take notes on the key concepts.
  • Try to apply the concepts you learned to real-world examples.
Two other activities
Expand to see all activities and additional details
Show all five activities
Solve practice problems
Solving practice problems can help you improve your problem-solving skills and apply the concepts you learn in the course to real-world problems.
Browse courses on Statistical Concepts
Show steps
  • Find practice problems that are relevant to the course material.
  • Solve the problems on your own.
  • Check your answers and identify any areas where you need to improve.
Apply statistical methods to a real-world problem
Applying statistical methods to a real-world problem can help you see how the concepts you learn in the course can be used to solve real-world problems.
Browse courses on Statistical Methods
Show steps
  • Identify a real-world problem that can be solved using statistical methods.
  • Collect data that is relevant to the problem.
  • Analyze the data using statistical methods.
  • Draw conclusions from the analysis.
  • Present your findings in a report or presentation.

Career center

Learners who complete Fundamentos de estadística aplicada will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists use statistical methods and machine learning algorithms to analyze large datasets and extract valuable insights. This course can provide a solid foundation for this role by introducing learners to the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Data Scientist.
Data Analyst
Data Analysts use their knowledge of statistics and data analysis techniques to gather and interpret data in order to help businesses make informed decisions. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Data Analyst.
Financial Analyst
Financial Analysts use statistical methods and financial data to make informed investment decisions. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Financial Analyst.
Quantitative Analyst
Quantitative Analysts use statistical methods and mathematical models to analyze financial data and make investment decisions. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Quantitative Analyst.
Risk Manager
Risk Managers use statistical methods to assess and manage risks in various industries, such as finance, insurance, and healthcare. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Risk Manager.
Market Researcher
Market Researchers use statistical methods to collect and analyze data about consumer behavior and market trends. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Market Researcher.
Research Analyst
Research Analysts use statistical methods to collect and analyze data in order to provide insights into various topics, such as consumer behavior, market trends, and public opinion. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Research Analyst.
Operations Research Analyst
Operations Research Analysts use statistical methods and optimization techniques to improve the efficiency of business operations. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as an Operations Research Analyst.
Statistician
Statisticians use statistical methods to collect, analyze, and interpret data in order to provide insights into various fields, such as medicine, public health, and social science. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Statistician.
Business Analyst
Business Analysts use statistical methods and data analysis techniques to identify and solve business problems. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Business Analyst.
Consultant
Consultants use statistical methods and data analysis techniques to provide advice and solutions to clients in a variety of industries. This course can help build a foundation for this role by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters. Additionally, the emphasis on real-world examples and simplified situations will help learners develop the skills they need to understand and apply statistical methods to real-world problems, which is essential for success as a Consultant.
Machine Learning Engineer
Machine Learning Engineers use statistical methods and machine learning algorithms to build and maintain machine learning models. This course may be helpful by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters.
Web Developer
Web Developers use statistical methods and data analysis techniques to design and implement web applications. This course may be helpful by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters.
Data Engineer
Data Engineers use statistical methods and data analysis techniques to build and maintain data pipelines. This course may be helpful by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters.
Software Engineer
Software Engineers use statistical methods and data analysis techniques to design and implement software solutions. This course may be helpful by providing learners with a solid understanding of the fundamental concepts of statistics, including data collection, description, and analysis, as well as methods for estimating population parameters.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Fundamentos de estadística aplicada.
Provides a comprehensive and in-depth treatment of statistical learning methods. It covers topics such as linear regression, logistic regression, decision trees, and support vector machines, with a focus on developing a deep understanding of the underlying statistical principles and algorithms.
Provides a comprehensive and rigorous introduction to probability and statistical inference. It covers topics such as probability theory, random variables, statistical distributions, and hypothesis testing, with a focus on developing a strong foundation in the mathematical foundations of statistics.
Introduces the theory and practice of Bayesian data analysis, a powerful statistical approach that incorporates prior knowledge and uncertainty into statistical modeling. It covers topics such as Bayesian inference, model selection, and computational methods, with a focus on practical applications.
Provides a comprehensive introduction to deep learning for natural language processing. It covers topics such as neural networks, word embeddings, attention mechanisms, and transformers, with a focus on developing practical NLP applications.
Provides a comprehensive introduction to reinforcement learning, a powerful machine learning technique for solving sequential decision-making problems. It covers topics such as Markov decision processes, value functions, and policy optimization, with a focus on developing practical reinforcement learning algorithms.
Introduces the principles and applications of machine learning in business intelligence. It covers topics such as data preprocessing, feature engineering, model selection, and performance evaluation, with a focus on using machine learning algorithms to solve real-world business problems.
Este libro proporciona una introducción integral a los conceptos estadísticos básicos y sus aplicaciones. Cubre temas esenciales como la recopilación de datos, el análisis descriptivo, la inferencia estadística y la regresión.
Provides a comprehensive overview of statistical methods and their applications in business and economics. It covers topics such as data collection, descriptive statistics, inferential statistics, and regression analysis, with a focus on real-world examples.
Este libro ofrece una introducción accesible a los conceptos estadísticos para estudiantes universitarios. Proporciona una base sólida en estadística descriptiva, inferencia y regresión, haciendo hincapié en la interpretación y aplicación práctica.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Fundamentos de estadística aplicada.
Introducción a la ciencia de datos aplicada
Most relevant
Análisis exploratorio de datos con Python y R
Most relevant
Estadísticas para la Ciencia de Datos con Python
Most relevant
Probabilidad y estadística
Most relevant
Modelos de Regresión Lineal y Pronósticos
Most relevant
Estadística Aplicada a los Negocios
Most relevant
Metodología de la ciencia de datos
Most relevant
Introducción a Data Science: Programación Estadística con...
Most relevant
Introducción al Análisis de Datos
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser