Save for later
Unsupervised Learning, Recommenders, Reinforcement Learning
In the third course of the Machine Learning Specialization, you will:
• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.
• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.
• Build a deep reinforcement learning model.
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. In this beginner-friendly program, you will learn the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated and expanded version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.)
By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
Get a Reminder
Rating | Not enough ratings |
---|---|
Length | 4 weeks |
Effort | At the rate of 5 hours a week, it typically takes 3 weeks to complete this course. |
Starts | Nov 7 (earlier today) |
Cost | $79 |
From | deeplearning.ai, Stanford University via Coursera |
Instructors | Andrew Ng, Eddy Shyu, Aarti Bagul, Geoff Ladwig |
Download Videos | On all desktop and mobile devices |
Language | English |
Subjects | Programming Data Science |
Tags | Computer Science Data Science Algorithms Machine Learning |
Get a Reminder
Similar Courses
Careers
An overview of related careers and their average salaries in the US. Bars indicate income percentile.
Research Scientist-Machine Learning $55k
Cloud Architect - Azure / Machine Learning $75k
Watson Machine Learning Engineer $81k
Machine Learning Software Developer $103k
Software Engineer (Machine Learning) $116k
Applied Scientist, Machine Learning $130k
Autonomy and Machine Learning Solutions Architect $131k
Applied Scientist - Machine Learning -... $136k
RESEARCH SCIENTIST (MACHINE LEARNING) $147k
Machine Learning Engineer 2 $161k
Machine Learning Scientist Manager $170k
Machine Learning Scientist, Personalization $213k
Write a review
Your opinion matters. Tell us what you think.
Please login to leave a review
Rating | Not enough ratings |
---|---|
Length | 4 weeks |
Effort | At the rate of 5 hours a week, it typically takes 3 weeks to complete this course. |
Starts | Nov 7 (earlier today) |
Cost | $79 |
From | deeplearning.ai, Stanford University via Coursera |
Instructors | Andrew Ng, Eddy Shyu, Aarti Bagul, Geoff Ladwig |
Download Videos | On all desktop and mobile devices |
Language | English |
Subjects | Programming Data Science |
Tags | Computer Science Data Science Algorithms Machine Learning |
Similar Courses
Sorted by relevance
Like this course?
Here's what to do next:
- Save this course for later
- Get more details from the course provider
- Enroll in this course