Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world?
Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world?
In this course, part of the Data Science MicroMasters program, you will learn a variety of supervised and unsupervised learning algorithms, and the theory behind those algorithms.
Using real-world case studies, you will learn how to classify images, identify salient topics in a corpus of documents, partition people according to personality profiles, and automatically capture the semantic structure of words and use it to categorize documents.
Armed with the knowledge from this course, you will be able to analyze many different types of data and to build descriptive and predictive models.
All programming examples and assignments will be in Python, using Jupyter notebooks.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.