We may earn an affiliate commission when you visit our partners.
Course image
Denis Parra

El MOOC “Fundamentos de sistemas recomendadores” tiene como propósito que los estudiantes conozcan los principales conceptos asociados a estos sistemas, así como su evolución histórica. Se enseñarán las principales técnicas de recomendación, como son el filtrado colaborativo y el filtrado basado en contenido. Adicionalmente, se espera que los estudiantes conozcan y apliquen diversas métricas de evaluación que les permitan evaluar diferentes dimensiones de los sistemas de recomendación.

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Bienvenida al curso
¡Bienvenidos y bienvenidas! Este curso tiene como propósito entregar los fundamentos de los sistemas de recomendación desde el punto de vista de entender el problema de recomendación personalizada, así como conocer y utilizar métodos y de métricas de evaluación.
Read more
Módulo 1: Conociendo los sistemas de recomendación
En este módulo aprenderás qué es un sistema de recomendación a partir de definiciones y ejemplos, veremos diferentes tipos de sistemas de recomendación e introduciremos cómo hacer recomendación no personalizada.
Módulo 2: Filtrado Colaborativo
En este módulo aprenderás qué es el filtrado colaborativa, diferentes versiones como la basada en usuarios y la basada en ítems, así como la técnica pendiente uno.
Módulo 3: Recomendación basada en contenido y evaluación vía ranking
En este módulo aprenderás sobre la recomendación basada en contenido, cómo usar descripciones textuales para recomendar y cómo evaluar un sistema de recomendación usando métricas de ranking.
Módulo 4: Métodos latentes de factorización matricial y FunkSVD
En este módulo aprenderás sobre métodos latentes, su relación con factorización matricial y cómo usarla para predecir ratings y hacer recomendaciones.
Cierre del curso
Les queremos agradecer el habernos acompañado en el curso. Esperamos que los contenidos abordados sean un real aporte en tu carrera profesional /laboral.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Diseñado para estudiantes curiosos por conocer los fundamentos de los sistemas de recomendación
Presenta conceptos y técnicas fundamentales para la comprensión y el desarrollo de sistemas de recomendación
Ofrece una exploración equilibrada de diversos enfoques, desde el filtrado colaborativo hasta la recomendación basada en contenido
Proporciona métricas de evaluación para medir la efectividad de los sistemas de recomendación
Requiere conocimientos previos en programación y álgebra lineal
El enfoque principal está en los conceptos y métodos, no en la implementación práctica

Save this course

Save Fundamentos de sistemas recomendadores to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Fundamentos de sistemas recomendadores with these activities:
Revisit collaborative filtering
Review the basic concepts and techniques of collaborative filtering to strengthen your foundation.
Browse courses on Collaborative Filtering
Show steps
  • Examine different types of collaborative filtering
  • Analyze the process of user-based and item-based CF
  • Practice computing similarity measures
Work through recommendation system problems
Engage in targeted practice to improve your problem-solving skills and reinforce your understanding.
Show steps
  • Find practice problems or coding challenges
  • Solve these problems using different techniques
  • Analyze your solutions and identify areas for improvement
Explore advanced recommendation techniques
Seek out and follow tutorials to enhance your understanding of cutting-edge recommendation methods.
Browse courses on Matrix Factorization
Show steps
  • Identify specialized tutorials on specific techniques
  • Follow tutorials and implement the techniques
  • Experiment with different parameters and datasets
One other activity
Expand to see all activities and additional details
Show all four activities
Build a recommendation system prototype
Create a functional prototype of a recommendation system to apply and test your knowledge.
Browse courses on Recommendation Systems
Show steps
  • Design the architecture of your system
  • Choose and implement recommendation algorithms
  • Develop a user interface for your prototype
  • Test and iterate on your system's performance

Career center

Learners who complete Fundamentos de sistemas recomendadores will develop knowledge and skills that may be useful to these careers:
Software Developer
Software Developers may work on developing recommender systems. This course may be helpful for learning how recommender systems are built.
Data Scientist
Data Scientists make use of recommender systems for tasks such as anomaly detection and fraud prevention. This course helps build a foundation for understanding how recommender systems work and how they can be implemented.
Machine Learning Engineer
Machine Learning Engineers will likely need to develop and implement recommender systems. This course can help build a foundaiton in recommender systems, which will be helpful for working with them.
Statistician
Statisticians will likely make use of recommender systems for tasks such as fraud detection. This course may be helpful for building a foundation on how recommender systems work and how they can be implemented.
Quantitative Analyst
Quantitative Analysts will likely make use of recommender systems in their work. This course may be helpful for building a foundation in recommender systems.
Product Manager
Product Managers make decisions on new features and products, which requires understanding user needs. Recommender systems can help with understanding user needs. This course helps build a foundation for understanding recommender systems and how they help users.
Data Analyst
A Data Analyst may make use of recommender systems to extract insights from data, a process that may then be used to inform decisions on marketing or product development. This course helps build a foundation for understanding what recommender systems are and how they are built.
User Experience Researcher
User Experience Researchers will want to understand recommender systems to make informed recommendations on improving user experiences. This course can help build a foundation for engaging with more technical stakeholders working on recommender systems.
Business Analyst
Business Analysts will likely make use of data from recommender systems to inform business decisions. This course may be helpful for building a foundation in recommender systems.
Marketing Manager
Marketing Managers may work closely with teams developing and implementing recomender systems. This course may be helpful for building a foundation in recommender systems and how they work with marketing initiatives.
Sales Manager
Sales Managers may work closely with teams developing and implementing recomender systems. This course may be helpful for building a foundation in recommender systems and how they work with sales initiatives.
Technical Writer
Technical Writers may be responsible for generating user documentation for recommender systems. This course may be helpful for learning the fundamentals of how recommender systems work.
Customer Success Manager
Customer Success Managers may make use of data from recommender systems to identify and address customer needs. This course may be helpful for understanding what recommender systems are and how they can inform marketing decisions.
Quality Assurance Analyst
Quality Assurance Analysts may be responsible for testing recommender systems. This course may be useful for building a foundation in recommender systems and how they are implemented.
Information Security Analyst
Information Security Analysts may work on projects securing recommender systems. This course may be useful for learning how recommender systems work.

Reading list

We've selected five books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Fundamentos de sistemas recomendadores.
Este libro de texto integral proporciona una base sólida en los conceptos y algoritmos subyacentes a los sistemas de recomendación, incluyendo técnicas avanzadas como el deep learning.
Este es un libro completo que cubre todos los aspectos de los sistemas de recomendación. Es un recurso valioso para cualquiera que quiera aprender más sobre este campo.
Provides a comprehensive overview of recommender systems for news. It discusses the unique challenges and opportunities of building recommender systems in this context, and presents a variety of techniques for doing so.
Libro de texto escrito por expertos, que proporciona una introducción completa a los sistemas de recomendación, con un enfoque en algoritmos y aplicaciones prácticas.
Este libro se centra en las aplicaciones de los sistemas de recomendación en el comercio electrónico. Proporciona una descripción general de los diferentes tipos de sistemas de recomendación utilizados en el comercio electrónico y su rendimiento.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Fundamentos de sistemas recomendadores.
Fundamentos de anatomía y técnica quirúrgica básica
Most relevant
Sistemas y modelos de organización de la atención en salud
Most relevant
Perspectivas en Salud Pública: Ampliando la visión en...
Most relevant
Anticorrupción: Introducción a conceptos y perspectiva...
Most relevant
Introducción a la sostenibilidad en los servicios de agua...
Most relevant
Introducción a Linux
Most relevant
Fundamentos de Ciberseguridad: un enfoque práctico
Most relevant
Las personas, la tecnología y el futuro de la movilidad
Most relevant
Motivación: querer aprender en clase
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser