This course introduces marketing data analytics, focusing on the crucial concepts of correlation and causality. Learners will explore statistical concepts and tools to analyze and interpret marketing data, leading to more informed and impactful marketing strategies. The course begins with core statistical concepts, such as standard deviation, variance, and normal distributions, in the context of marketing decisions. It shows how to visualize correlations and causal networks using techniques such as Structural Equation Modeling (SEM) and Path Analysis. The course discussions of analytics ethics, guiding participants to identify and avoid common pitfalls in data interpretation. This course is an invaluable resource for anyone looking to enhance their marketing strategies through trustworthy data-driven insights.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.