Nous abordons notre dernier thème : l'intégration. Nous commençons par définir l'intégrale indéfinie et l'intégrale définie. Nous introduisons l'intégrale définie à l'aide des sommes de Riemann et des sommes supérieures et inférieures. Nous définissons trois propriétés importantes des intégrales définies : la linéarité de l'intégrale, la subdivision du domaine ainsi que la monotonie de l'intégrale. L'intégration de fonction permet de définir le théorème de la moyenne. Il stipule que la moyenne d'une fonction continue sur un segment se réalise comme valeur de la fonction en un certain point. Nous démontrons ce théorème. Finalement, nous arrivons au cœur du chapitre grâce au théorème fondamental du calcul intégral qui permet d'introduire la primitive d'une fonction. Nous donnons quelques exemples de calcul de primitives ainsi que des techniques d'intégration (intégration par parties, intégration par changement de variables, intégration par récurrence). Nous finissons notre discussion sur l'intégration en présentant l'intégration de fonctions particulières : l'intégration du développement limité d'une fonction, l'intégration des séries entières et l'intégration de fonctions continues par morceaux. Ces trois exemples permettent de calculer plus rapidement une fonction si elle a une forme spéciale. Finalement, nous étendons l'intégration usuelle à celle des intégrales généralisées. Elles sont définies par le passage à la limite dans des intégrales. Nous présentons trois types d'intégrales généralisées ainsi que des exemples. Le chapitre se termine par l'intégration des fonctions rationnelles à l'aide de la décomposition en éléments simples.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.