We may earn an affiliate commission when you visit our partners.
Course image
Kevin Lynch

로봇이 어떻게 작동하는지 궁금하신가요? 로봇공학 커리어에 관심이 있으신가요?로봇공학의 모든 하위 분야에서 사용되는 기초적인 수학적 모델링 기법을 열심히 학습할 준비가 되셨나요?

그렇다면, ‘현대 로봇공학: 역학, 계획 및 제어(Modern Robotics: Mechanics, Planning, and Control)’ 전문 과정이 여러분에게 안성맞춤일 수 있습니다. 이 전문 과정은 여섯 개의 짧은 강좌로 이루어져 있으며, 로봇공학 분야에서 경력을 쌓거나 심화 학습을 희망하는 수강생에게 적합한 과정입니다.맛보기가 아닙니다.

전문 과정 강좌 2(로봇 기구학)에서는 지수곱 공식을 사용하여 정기구학 문제(관절 값으로 로봇의 ‘손’ 형상 계산)를 푸는 방법을 배울 수 있습니다. 강좌 1에서 배운 내용을 사용하면 정기구학 문제를 쉽게 풀 수 있으므로 열심히 노력한 보람을 느낄 수 있습니다. 이어서 관절 속도 및 힘/토크와 엔드 이펙터 비틀림 및 렌치의 관계를 다루는 속도 기구학 및 정역학, 역기구학(원하는 ‘손’ 형상을 구하기 위한 관절 값 계산), 그리고 폐쇄형 구조를 가진 로봇의 기구학을 배우게 됩니다.

Read more

로봇이 어떻게 작동하는지 궁금하신가요? 로봇공학 커리어에 관심이 있으신가요?로봇공학의 모든 하위 분야에서 사용되는 기초적인 수학적 모델링 기법을 열심히 학습할 준비가 되셨나요?

그렇다면, ‘현대 로봇공학: 역학, 계획 및 제어(Modern Robotics: Mechanics, Planning, and Control)’ 전문 과정이 여러분에게 안성맞춤일 수 있습니다. 이 전문 과정은 여섯 개의 짧은 강좌로 이루어져 있으며, 로봇공학 분야에서 경력을 쌓거나 심화 학습을 희망하는 수강생에게 적합한 과정입니다.맛보기가 아닙니다.

전문 과정 강좌 2(로봇 기구학)에서는 지수곱 공식을 사용하여 정기구학 문제(관절 값으로 로봇의 ‘손’ 형상 계산)를 푸는 방법을 배울 수 있습니다. 강좌 1에서 배운 내용을 사용하면 정기구학 문제를 쉽게 풀 수 있으므로 열심히 노력한 보람을 느낄 수 있습니다. 이어서 관절 속도 및 힘/토크와 엔드 이펙터 비틀림 및 렌치의 관계를 다루는 속도 기구학 및 정역학, 역기구학(원하는 ‘손’ 형상을 구하기 위한 관절 값 계산), 그리고 폐쇄형 구조를 가진 로봇의 기구학을 배우게 됩니다.

본 강좌의 내용은 교재 ‘Modern Robotics:Mechanics, Planning, and Control’(Lynch 및 Park, Cambridge University Press 2017)에 따라 제작되었습니다. 이 책을 구매하시거나 무료 pdf 견본을 사용하실 수 있습니다.여러분이 원하는 언어(Python, Mathematica, MATLAB 중 선택)로 로봇공학 소프트웨어의 라이브러리를 구축하실 수 있습니다. 또한 무료 크로스 플랫폼 로봇 시뮬레이터 V-REP를 사용하여 집에서도 편하게 무료로 최첨단 로봇공학 작업을 수행하실 수 있습니다.

Enroll now

What's inside

Syllabus

챕터 4: 정기구학
공간 좌표계 및 엔드 이펙터 좌표계의 정기구학 문제를 풀기 위한 지수곱 공식을 배웁니다.
챕터 5: 속도 기구학 및 정역학
공간 야코비안 및 동체 야코비안을 활용한 속도 기구학, 개방형 구조의 정역학, 특이점, 그리고 조작성을 배웁니다.
Read more
챕터 6: 역기구학
해석적 역기구학과 수치적 역기구학을 알아봅니다.
챕터 7: 폐쇄형 구조의 기구학
폐쇄형 구조의 정기구학, 역기구학, 속도 기구학, 그리고 정역학을 배웁니다.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Covers the fundamental mathematical modeling techniques used across all subfields of robotics
Concepts are reinforced through practical software implementation in various programming languages
Utilizes the respected textbook, Modern Robotics: Mechanics, Planning, and Control by Lynch and Park
Taught by Professor Kevin Lynch, a renowned expert in robotics
Provides hands-on experience using the industry-standard software, V-REP
Suitable for beginners and advanced learners alike

Save this course

Save 현대 로봇공학, 강좌 2: 로봇 기구학 to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in 현대 로봇공학, 강좌 2: 로봇 기구학 with these activities:
V-REP 로봇 시뮬레이터 튜토리얼 익히기
이 활동은 로봇 시뮬레이션 기술을 향상시키고 실제 로봇을 프로그래밍하기 전에 알고리즘을 테스트하는 데 도움이 될 것입니다.
Show steps
  • V-REP 로봇 시뮬레이터 소개 튜토리얼을 찾으세요.
  • 튜토리얼을 따라서 시뮬레이션 환경을 설정하세요.
교수자 강의 노트와 과제 정리
교수자 자료에서 핵심 개념과 주요 아이디어 추출하여 이해와 암기력 향상
Show steps
  • 강의 노트와 과제 정리
  • 주요 개념 강조 및 요약
정기구학 문제 풀기
공간 좌표계와 엔드 이펙터 좌표계의 정기구학 문제를 풀기 위한 지수곱 공식을 अभ्यास करने से आपको पाठ्यक्रम में कठिन माने जाने वाले विषयों को समझने में मदद मिलेगी।
Show steps
  • 다양한 엔드 이펙터 좌표계와 공간 좌표계를 사용하여 정기구학 문제를 풀어 보세요.
  • 공간 좌표계와 엔드 이펙터 좌표계를 연결하는 변환 행렬을 계산해 보세요.
  • 다른 로봇 시뮬레이터(예: Gazebo, ROS)를 사용하여 정기구학 문제를 확인해 보세요.
Seven other activities
Expand to see all activities and additional details
Show all ten activities
피어 그룹 토론 참여
이 활동은 다른 학생들과 아이디어를 공유하고 피드백을 받는 데 도움이 될 것입니다.
Show steps
  • 피어 그룹에 참여하세요.
  • 과정 관련 주제에 대해 토론하세요.
  • 다른 학생들과 협력하여 문제를 해결하세요.
로봇 시뮬레이터 V-REP 자습서 탐색
로봇과의 상호 작용 시뮬레이션을 경험하고 실험함으로써 로봇공학 개념 이해 증진
Show steps
  • V-REP 자습서 및 문서 검토
  • 간단한 로봇 모델 생성 및 조작
  • 로봇 시뮬레이션 수행 및 결과 분석
정기구학 문제 연습
지수곱 공식을 통해 관절 값에서 로봇의 '손' 모양 계산 연습하여 정기구학적 문제 해결 기술 향상
Show steps
  • 다양한 로봇 관절 구성에 대해 지수곱 공식 적용
  • 관절 값으로부터 '손' 좌표계 계산
속도 기구학 및 정역학에 대한 개요 작성
속도 기구학과 정역학 개념을 요약해 보면 पाठ्यक्रम में शामिल जটিल गणितीय मॉडलिंग तकनीकों को समझने में आपकी मदद मिलेगी।
Show steps
  • 속도 기구학과 정역학의 기본 원리에 대해 개요를 작성해 보세요.
  • 개방형 구조와 폐쇄형 구조의 속도 기구학 및 정역학에 대한 차이점을 논의해 보세요.
  • 예제를 사용하여 속도 기구학 및 정역학의 개념을 설명해 보세요.
로봇공학 토론 그룹 참여
다른 학생들과 로봇공학 개념 공유 및 토론을 통해 이해도 향상
Show steps
  • 토론 그룹 찾기
  • 정기적인 참여
  • 이해가 되지 않는 부분 질문
역기구학 튜토리얼 찾기
역기구학 튜토리얼을 찾아보면 पाठ्यक्रम में शामिल उन्नत अवधारणाओं को समझने में आपकी मदद मिलेगी।
Show steps
  • 역기구학에 대한 튜토리얼을 찾아보세요.
  • 튜토리얼에서 설명하는 개념을 이해해 보세요.
  • 튜토리얼에서 제공하는 예제 문제를 풀어 보세요.
로봇 기구학 워크숍 참석
로봇 기구학 워크숍에 참석하면 पाठ्यक्रम में शामिल व्यावहारिक अनुप्रयोगों को समझने में आपकी मदद मिलेगी।
Show steps
  • 로봇 기구학 워크숍을 찾아보세요.
  • 워크숍에 등록하세요.
  • 워크숍에서 주의 깊게 들으세요.
  • 워크숍에서 실습에 참여하세요.

Career center

Learners who complete 현대 로봇공학, 강좌 2: 로봇 기구학 will develop knowledge and skills that may be useful to these careers:
Robotics Engineer
Robotics Engineers design, build, and test robots, using knowledge of mechanical, electrical, and control engineering to make them work effectively. This course helps build a foundation for the knowledge that a Robotics Engineer needs because it covers concepts like velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, all of which are crucial for the design and construction of robots.
Control Systems Engineer
Control Systems Engineers design and implement control systems for various applications, such as industrial automation, robotics, and aerospace. The concepts covered in this course, such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, are often applied in control systems, making this course a valuable resource for those aspiring to be Control Systems Engineers.
Mechanical Engineer
Mechanical Engineers are responsible for the design, development, and testing of mechanical systems, including robots. This course is relevant to Mechanical Engineers because it covers topics like velocity kinematics and statics, which are fundamental principles used in the design and analysis of mechanical systems.
Automation Engineer
Automation Engineers design, implement, and maintain automated systems in various industries. The concepts covered in this course, such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, provide a solid foundation for understanding and working with automated systems, making it a valuable asset for Automation Engineers.
Mechatronics Engineer
Mechatronics Engineers integrate electrical, mechanical, and computer engineering principles to design and develop products and systems. This course delves into concepts such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which are essential for Mechatronics Engineers to understand and apply in their work.
Systems Engineer
Systems Engineers design, develop, and integrate complex systems, encompassing hardware and software components. This course can be helpful for Systems Engineers as it covers concepts like velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which are important for understanding and designing complex systems.
Biomedical Engineer
Biomedical Engineers apply engineering principles to design and develop medical devices and systems. Some medical devices incorporate robotics, and this course can be beneficial for Biomedical Engineers interested in this area. It covers topics such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which are relevant to the design and development of robotic medical devices.
Electrical Engineer
Electrical Engineers design, develop, and maintain electrical systems. While the focus of this course is on the mechanical aspects of robotics, it may still be of interest to Electrical Engineers since robots often incorporate electrical components and systems. Understanding the concepts covered in this course, such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, can provide Electrical Engineers with a more comprehensive view of robotics.
Computer Engineer
Computer Engineers design, develop, and maintain computer systems. Robotics often involves the use of computers and software, so this course may be of interest to Computer Engineers looking to work in robotics. It covers topics such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which can provide Computer Engineers with a better understanding of the mechanical aspects of robotics.
Materials Engineer
Materials Engineers develop and test new materials for various applications. Robotics often involves the use of specialized materials, and this course may be of interest to Materials Engineers interested in this area. It covers topics such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which can provide Materials Engineers with a better understanding of the mechanical properties and behavior of materials used in robotics.
Industrial Engineer
Industrial Engineers design, implement, and maintain integrated systems for managing industrial processes and operations. This course may be of interest to Industrial Engineers involved in the manufacturing or automation of robotic systems. It covers topics such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which can provide Industrial Engineers with a better understanding of the mechanical aspects of robotics.
Manufacturing Engineer
Manufacturing Engineers plan, design, and oversee the production of products and systems. This course may be of interest to Manufacturing Engineers involved in the production of robotic systems. It covers topics such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics, which can provide Manufacturing Engineers with a better understanding of the mechanical aspects of robotics.
Project Manager
Project Managers plan, execute, and close projects, ensuring their successful completion. In the field of robotics, Project Managers may be involved in projects related to the design, development, or deployment of robotic systems. This course may provide Project Managers with a better understanding of the technical aspects of robotics, including concepts such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics.
Quality Assurance Engineer
Quality Assurance Engineers ensure that products and systems meet quality standards. In the field of robotics, Quality Assurance Engineers may be involved in testing and validating robotic systems to ensure they meet performance and safety requirements. This course may provide Quality Assurance Engineers with a better understanding of the technical aspects of robotics, including concepts such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics.
Systems Analyst
Systems Analysts analyze and design systems to meet the needs of organizations. In the field of robotics, Systems Analysts may be involved in analyzing and designing systems that incorporate robotic components. This course may provide Systems Analysts with a better understanding of the technical aspects of robotics, including concepts such as velocity kinematics and statics, inverse kinematics, and closed-chain kinematics.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in 현대 로봇공학, 강좌 2: 로봇 기구학.
Is the textbook for the course. It provides a comprehensive overview of robotics, covering topics such as kinematics, dynamics, control, and planning. It valuable resource for students and researchers in robotics and related fields.
Provides a comprehensive overview of robot manipulation, covering topics such as kinematics, dynamics, control, and planning. It valuable resource for students and researchers in robotics and related fields.
Provides a comprehensive overview of planning algorithms, covering topics such as kinematics, dynamics, control, and planning. It valuable resource for students and researchers in robotics and related fields.
Provides a comprehensive overview of probabilistic robotics, covering topics such as kinematics, dynamics, control, and planning. It valuable resource for students and researchers in robotics and related fields.
Comprehensive introduction to robot modeling and control. It covers a wide range of topics, including kinematics, dynamics, and control.
Comprehensive introduction to robotics. It covers a wide range of topics, including kinematics, dynamics, and control.
Comprehensive introduction to robotics. It covers a wide range of topics, including kinematics, dynamics, control, and planning.
Comprehensive introduction to machine learning for robotics. It covers a wide range of topics, including supervised learning, unsupervised learning, and reinforcement learning.
Covers advanced topics in robotics, including control, planning, and applications.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to 현대 로봇공학, 강좌 2: 로봇 기구학.
현대 로봇공학, 강좌 1: 로봇 동작의 기초
Most relevant
현대 로봇공학, 강좌 5: 로봇 매니퓰레이션 및 차륜형 이동 로봇
Most relevant
현대 로봇공학, 강좌 4: 로봇 동작 계획 및 제어
Most relevant
현대 로봇공학, 강좌 3: 로봇 동역학
Most relevant
현대 로봇공학, 강좌 6: 캡스톤 프로젝트, 모바일 매니퓰레이션
Most relevant
재생 에너지: 기본 원칙 및 일자리 창출
Most relevant
데이터 중심 기업을 위한 비즈니스 지표
Most relevant
로봇공학: 캡스톤 디자인
Most relevant
디지털 제품 경영: 현대적 기본 원칙
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser